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Abstract— In this paper we examine the geometric relations
between various measured parameters and their corresponding
errors in angle-measurement based emitter localization scenarios.
We derive a geometric constraint formulating the relationship
among the measurement errors in such a scenario. Using this
constraint, we formulate the localization task as a constrained op-
timization problem that can be performed on the measurements
in order to provide the optimal values such that the solution
is consistent with the underlying geometry. We illustrate and
confirm the advantages of our approach through simulation.

Index Terms— Angle Measurements, Bearings, Geometric Con-
straints, Localization, Optimization, Tracking.

I. INTRODUCTION

BEARING sensors measure the direction to the target with
respect to a global or local direction [1], [2], [3], [4]

and often permit passive localization by exploiting the char-
acteristics of an emitter’s signal rather than requiring active
signal generation. The problem of angle-based localization
and tracking was of considerable interest during World War
II [5], [6] but has some roots dating back even further [7].
The majority of the approaches examine the problem from
a statistical estimation point of view. Assumptions on noise
distributions and the resulting optimization algorithms make
little attempt to directly exploit the underlying geometrical
properties of the required localization solution.

Stansfield in [5] provided a closed-form small error ap-
proximation of the maximum likelihood estimator in 1947.
Stansfield assumed that the residual can be replaced with
the sine of the residual and that the range from each sensor
to the target may be approximately known. Under these
assumptions, a closed-form solution is possible and given in
[5] and rigorously analysed in [8]. It is shown in [8] that the
Stansfield estimator is asymptotically biased.

A linearized least squares approach to bearings-based local-
ization was given in [9]. This method attempts to approximate
the maximum likelihood estimator and may result in large
localization errors when the measurement noise is large or the
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geometry is adversely suited to accurate localization. Another
approach to maximum likelihood localization using iteration
was given in [10]. Note that under normal density assumptions,
the maximum likelihood cost function is simply a weighted
nonlinear least squares cost function. Closed-form solutions do
not exist for finding the global minimum of such cost functions
and the linearized and iterative algorithms typically require an
initial estimate of the target location [10], [9], [8], [11]. In [8]
the traditional maximum likelihood formulation (abbreviated
as TML henceforth) is examined in detail including a bias
and variance analysis. A separate analysis is also conducted
in [11] and the reader is referred to these two papers [11], [8]
for further information on the TML approach.

In this paper we focus particularly on the localization
problem for a single stationary target. Other bearing-only
localization and tracking problems exist and complement the
work of this paper. The multiple target localization problem
can be broken down into multiple single target localization
problems if the measurement origins are known (i.e. if the
measurements can be uniquely assigned to individual targets).
If the measurement origins are unknown then the so-called
data-association problem needs to be addressed. There exists
a number of papers in the literature that address this problem,
e.g. see [12], [13], [14], [15], [16], [17]. Some of these papers
also take into account so-called missing measurements and
false alarms caused by clutter and electronic counter-measures.
Mobile target tracking with bearing measurements has been
addressed in a number of papers and various problems exist,
e.g. see [18], [11], [19], [20], [21] and the references therein.

The principal and immediate objective of this paper is to
explicitly derive and examine functional relationships (which
depend on the measurements and are rooted in geometry)
between the measurement errors in a passive surveillance
scenario. We seek to form a constraint that can be used
in a constrained optimization process where the aim of the
process is to minimize the location estimation error for a
single target. Indeed the errors may be estimated such that
the final solution satisfies the proposed constraint and hence
is consistent with the geometry. The ultimate goal is to derive
a maximum likelihood localization algorithm that is robust
against initialization errors and that can converge in the
presence of adverse localization geometries.

Constraint-based optimization in localization systems may
have first been introduced within the computer vision com-
munity [22], [23], [24]. In [22] the epipolar constraint is
used to derive an optimal localization algorithm for stereo
vision systems. The epipolar constraint relates a point image
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in one camera view to the corresponding point image in
the second camera view based on epipolar geometry. This
relationship then acts as a constraint in the presence of
noisy measurements. The vision-based localization problem is
extended in [24] for three cameras. Geometric constraints have
also been examined for distance-based localization in [25]
where a convex quadratic constraint is given on the squared
distance measurement errors. One of the contributions of this
paper is the development of such a geometric constraint for
bearing-based localization.

We illustrate our algorithm’s relationship to the traditional
maximum likelihood algorithm (TML) [11], [8]. The con-
strained optimization algorithm derived in this paper will be
statistically optimal in the maximum likelihood sense but will
not require an initial estimate of the target location. It is
this initial target location estimate that often results in the
TML algorithm diverging in adverse localization geometries,
i.e. the TML initialization is geometry-dependent [10], [8].
Our algorithm can be initialized more naturally in the light of
known measurement error statistics and is geometry-invariant.
This is by no means a trivial advantage and is a major
contribution of this paper since it addresses the practical prob-
lems associated with the traditionally formulated maximum
likelihood algorithm.

The remainder of this paper is organized as follows. In
Section II we formulate the problem and derive a functional
relationship between the bearing errors in R

2 and R
3. Section

III outlines the inconsistency problem associated with the
over-determined system of measurement equations from a
geometric perspective and outlines the solution to the problem
conceptually. Section IV discusses the constrained optimiza-
tion algorithm used to find a consistent solution to the problem
and in Section 5 we illustrate the proposed concepts through
simulation. In Section V we also discuss our technique’s re-
lationship to the traditional least squares approach. In Section
VI we give our concluding remarks.

II. ANGLE CONSTRAINTS FOR PASSIVE SURVEILLANCE

A. Problems in R
2

Consider the problem of localizing an emitter in R
2 using

measurements from two bearing sensors. The two bearing
measurement equations will lead to a solution for the two
unknowns (i.e. the x and y coordinates of the target), and
the solution is unique (though not in general error free) even
in the presence of noisy measurements. With three or more
bearing sensors in R

2 we obtain an overdetermined system of
equations with respect to the unknown target coordinates. In
a noiseless environment the overdetermined system will have
a unique solution. In a noisy environment, the overdetermined
system of equations will generally not have any solution. We
consider the problem of formulating a relationship between
the measurement errors such that the measurement equations
permit a consistent solution for the unknown target location.

Each sensor measures the bearing to the target relative to a
global direction (e.g. North). Call those bearing estimates φ̂1T ,
φ̂2T and φ̂3T . These have errors ei such that the true bearings
φiT obey φ̂iT = φiT + ei. Also, we have available exactly the

inter-sensor bearings φ12 and φ13 etc. We define the bearings
such that φ̂iT , φij ∈ [0, 2π). The unit of angle is radians
and we further assume that all calculations are performed
in radians (this distinction will be important when it comes
to approximating functions). The unit of degrees will only
sparingly be used for illustrative convenience. The following
will be adopted as a Standing Assumption for the whole paper:

Assumption 1: No sensors are co-located with and no two
sensors are collinear with a single target, i.e. φiT �= φij ∀i, j ∈
{1, 2, 3} and i �= j.

Note that the assumption does not necessarily imply that
φ̂iT �= φij .

Let us define an angle θijT ≡ (φiT − φij)(mod 2π) and
restrict the interval such that θijT ∈ (−π, π]. Geometrically
we can interpret θijT to be the angle obtained by rotating a ray
counter-clockwise from the line segment connecting sensors i
and j to the line segment connecting the sensor i and the
target T . Therefore, it is clear that θijT = −θiTj and due to
the notion of orientation inherent in the definition of θijT it
follows that θijT and θjiT will be of opposite sign. The error
in the measured angle θ̂ijT = θijT + ei obeys ei ∈ (−π, π]
and coincides with the typical notion of error.

Fig. 1. Sensors-Target System in R
2

Generally for any system of three sensors and a single target,
Figure 1, we can determine six angles that are related to their
measured counterparts via

θ̂ijT = θijT + ei (1)

and i, j ∈ {1, 2, 3} with i �= j. Note that for any j, θ̂ijT (being
an angle measured by sensor i) involves only the error ei.

Theorem 1: Consider an arrangement of three sensors and
a target all located in the plane, e.g. as shown in Figure
1 and assume Assumption 1 holds. Suppose that we have
available the associated six quantities as indicated in (1) and
as previously defined. Then in terms of the known quantities
θ̂ijT , the unknown measurement errors satisfy the following
trigonometric constraint

sin(θ̂12T − e1) sin(θ̂23T − e2) sin(θ̂31T − e3) +

sin(θ̂21T − e2) sin(θ̂32T − e3) sin(θ̂13T − e1) = 0 (2)

where ei, ∀i ∈ {1, 2, 3} are errors.
Proof: Recall that the definitions of θijT and θjiT imply

that the two quantities are of opposite sign. Then from the
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well-known law of sines, a system of equations can be given
as follows

A sin(θ12T ) + B sin(θ21T ) = 0 (3)

B sin(θ23T ) + C sin(θ32T ) = 0 (4)

A sin(θ13T ) + C sin(θ31T ) = 0 (5)

Eliminating A, B and C leads to

sin(θ12T ) sin(θ23T ) sin(θ31T ) +
sin(θ21T ) sin(θ32T ) sin(θ13T ) = 0 (6)

Now (6) is a relationship between the angles of the triangle
system. By adding the corresponding error term to both sides
of each equation in (1) and substituting into (6) we obtain the
constraint equation (2) on the measurement errors.

Remark 1: The condition (2) given on the measurement
errors in Theorem 1 is not useful when the sensors are collinear
with each other (but not with the target). When this occurs
sin(θ̂ijT + ei) = − sin(θ̂ikT + ei) for i, j, k ∈ {1, 2, 3} and
i �= j �= k and for any value of ei. Accordingly, for fixed
measurements θ̂ijT , the formula (2) will be satisfied with all
values of ei. Thus (2) fails to provide any constraint on the
errors in this particular scenario.

For completeness, we provide a general constraint equation
that is useful in all geometries including those involving three
collinear sensors but that includes some inter-sensor distances.
The constraint (2) has the advantage of involving only the
measured angle values as parameters.

Theorem 2: Consider three bearing sensors satisfying As-
sumption 1. Assume that for each sensor pair i, j, the distance
dij between i and j is known. Then in terms of the known
quantities θ̂ijT and dij , the unknown measurement errors
satisfy the following trigonometric constraint

d12 sin(θ̂12T − e1) sin(θ̂23T − e2 + θ̂32T − e3) −
d23 sin(θ̂32T − e3) sin(θ̂12T − e1 + θ̂21T − e2) = 0 (7)

where ei, ∀i ∈ {1, 2, 3} are errors.
Proof: Referring to Figure 1 and the system (1), a system

of equations can be given as follows

B = d12 sin(θ12T )
sin(θ12T +θ21T ) (8)

B = d23 sin(θ32T )
sin(θ23T +θ32T ) (9)

This clearly leads directly to

d12 sin(θ12T ) sin(θ23T + θ32T ) −
d23 sin(θ32T ) sin(θ12T + θ21T ) = 0 (10)

Therefore, (10) is a trigonometric relationship between the
angles of the triangle system. By adding the corresponding
error term to both sides of each equation in (1) and substituting
into (10) we obtain the constraint equation (7).

If the problem involves k > 3 measurements then we can
derive k − 2 independent constraints of the form

ci−2(e1, e2, ei) = 0, ∀i ∈ {3, 4, . . . , k} (11)

These equations are obtained by considering the relations
for the angles involving the target and a sensor triangle
including sensors 1, 2 and i, ∀i ∈ {3, 4, . . . , k}.

B. Problems in R
3

In R
3, it will generally be the case that two rays emanating

from two sensors will not have a single intersection in the
presence of noisy measurements. Consider the scenario de-
picted in Figure 2 involving sensor 1 and sensor 2. The plane
including the two sensors and the point A is the horizontal
plane (or (x, y)-plane) and AT is normal to that plane.

Remark 2: The choice of coordinate basis is determined
first by locating sensor 1 at the origin, secondly by locating
sensor 2 on the positive x-axis, and thirdly by defining the
direction of the horizontal, or equivalently, choosing orienta-
tions for the y and z axis, which are only determined up to a
rotation by sensors 1 and 2.

Fig. 2. Sensor configuration in R
3. The point A lies in the (x, y)-plane and

AT is perpendicular to the (x, y)-plane.

The measurements taken via the passive localization system
in R

3 can be given as

θ̂ij = θij + eθij

φ̂ij = φij + eφij , i, j ∈ {1, 2}, i �= j

where θij and φij are the true elevation and azimuth angles
with respect to the origin of the coordinate system defined by
sensors i and j and taken at the ith sensor. The hatted versions
are the noise corrupted measurements and eθij and eφij are
the respective error values.

Theorem 3: Assume the choice of coordinate system agrees
with Remark 2 and the depiction in Figure 2. Then in terms
of the known quantities θ̂ij and φ̂ij for i, j ∈ {1, 2} the un-
known measurement errors satisfy the following trigonometric
constraint

cot(θ̂12 − eθ12) sin(φ̂12 − eφ12) −
cot(θ̂21 − eθ21) sin(φ̂21 − eφ21) = 0 (12)

where eθij and eφij are the elevation and azimuth bearing
errors respectively.

Proof: Referring to Figure 2, a system of equations can
be given as follows

AB = AS1 sin(φ12) = AT cot(θ12) sin(φ12)
AB = AS2 sin(π − φ21) = AT cot(θ21) sin(φ21) (13)

where ASi is the distance of the line segment connecting point
A and sensor i. Eliminating the distances AB, ASk and AT
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from the system gives

cot(θ12) sin(φ12) − cot(θ21) sin(φ21) = 0 (14)

Therefore, (14) is a trigonometric relationship between the
bearing measurements in a 3-dimensional localization prob-
lem. By adding the corresponding error term to both sides of
each equation in (12) and substituting into (14) we obtain the
constraint equation (12).

If the problem involves k > 2 sensors then we have k − 1
independent constraints by creating constraints of the form

ci−1(eθ1i, eφ1i, eθi1, eφi1) = 0, ∀i ∈ {2, 3, . . . , k} (15)

These equations are obtained by considering the relations
for the angles involving the target and sensors 1 and i,
∀i ∈ {2, 3, . . . , k}. Note that we may also require each pair
of sensors 1 and i, for i = 2, 3, . . . , k to be arranged on their
own coordinate system defined by sensors 1 and i and an
associated choice of horizontal plane (specific to these two
sensors); sensor 1 can remain at the origin and sensor i on
a local positive x-axis specific to the two sensors. Thus the
coordinate system for sensors 1 and i > 2 is obtained from
that for sensors 1 and 2 by rotation but not translation.

III. GEOMETRIC INTERPRETATIONS

In this section we consider the underlying geometric inter-
pretations of the problems considered in this paper and explore
simple alternative approaches to localization. We look at the
methods that are required to find solutions to the overdeter-
mined localization problems and hence further motivate the
work explored in this paper.

A. Geometry in R
2

If we attempt to localize a single target in R
2 using three

bearing measurements from three generically placed sensors
we can obtain an overdetermined system of equations in the
target location (i.e. the x and y coordinates). In an ideal case
there will be a unique solution to this overdetermined system
of equations. In practice, i.e. in the presence of noise, it will
generally be the case that there will be no (exact) solution to
the system. One approach that may be followed in the presence
of noisy measurements is to do pair-wise localization from the
three pairs of well-defined systems. The result is depicted in
Figure 3.

We can estimate the mean position of the three estimates as
follows

xmean = (x1:2 + x1:3 + x2:3)/3
ymean = (y1:2 + y1:3 + y2:3)/3 (16)

where xi:j and yi:j are the x and y estimates found by
solving the well-defined system of measurement equations
from sensors i and j. This is an ad-hoc way of localizing,
and generically the errors associated with this estimate will
fail to satisfy (2) or (7). In [26] the bias and variance of such
an estimator is derived for the case of two bearing sensors
and a single target and the extension to multiple bearing
sensors is straightforward. The pseudo-linear estimator [11]

Fig. 3. Inconsistent system in R
2

is an alternative closed-form approach that is similar to the
given averaging approach in principle. Given the existence of
the constraint on the errors in the system, we should seek
to estimate a position for which the associated errors are
consistent with (2) and (7). We will enforce this constraint
by estimating the errors through a constrained optimization
process.

B. Geometry in R
3

In R
3 the two virtual rays emanating from the two sensors

will generally have no intersection in the presence of noise
corrupted measurements. One approach to find a location
solution that appears to not have been considered in the
literature is to simply solve the triples of well-defined systems
of equations and then take the average value of these estimates
as we now describe. Considering two sensors and the resulting
four measurement equations then we know that we cannot find
an exact solution to the overdetermined system with noisy
data, other than for nongeneric values of the noise. However,
from the four equations we have four well-defined systems of
three equations. We can solve all of these systems of equations
for the target position and then find the average target position.
That is, we find

xmean = (xθ12:φ12:θ21 + xθ12:φ12:φ21 +
xθ12:θ21:φ21 + xφ12:θ21:φ21)/4

ymean = (yθ12:φ12:θ21 + yθ12:φ12:φ21 +
yθ12:θ21:φ21 + yφ12:θ21:φ21)/4

zmean = (zθ12:φ12:θ21 + zθ12:φ12:φ21 +
zθ12:θ21:φ21 + zφ12:θ21:φ21)/4 (17)

where xθ12:φ12:θ21 is the target’s x coordinate determined
using the well-determined system of measurements given by
θ12, φ12, and θ21, and so on for the other terms in (17).

An alternative method to find an estimate from the noisy
information defining the two rays emanating from two sensors
in R

3 is to find the unique line that intersects both rays
perpendicularly, and choose the midpoint between the two
intersection points. Such a line always exists in R

3. However,
this method of localization is practically difficult to implement
and may permit large large localization errors [22]; its will not
be covered further in this paper. The pseudo-linear estimator
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(or linear least squares approach) as discussed for R
2 can be

extended to the R
3 case [27] and is again similar to the given

averaging approach in principle.
Given the error constraint for the R

3 problem (12) we will
attempt to estimate the errors that ensure a location solution
that is consistent with the underlying geometry. The approach
we take to do this is based on constrained optimization theory.
This approach forces an underlying geometrical property of the
system while at the same time attempts to minimize the effect
of the errors.

C. Traditional Maximum Likelihood

In both R
2 and R

3 the traditionally formulated maximum
likelihood (TML) algorithm (e.g. see [10], [9], [8], [11])
permits a consistent target location solution at the maximum
of the likelihood cost function. Under the usual Gaussian
error assumptions this target location is found by minimizing
a nonconvex and nonlinear least squares cost function. To
find the minimum requires a numerical optimization algorithm
and an initial target location estimate that may play a critical
role in the optimization convergence and in finding the global
minimum. The initial target estimate may be derived from the
previously described closed-form averaging location estimates.
We shall show in the subsequent simulations that the TML
algorithm may diverge in the presence of adverse localization
geometries due to poor initialization. Again the reader is
referred to [8], [11] for more details on the TML algorithms.
In the simulations given subsequently we implement the TML
algorithm with a Gauss-Newton algorithm as discussed in [8].

IV. THE CONSTRAINED OPTIMIZATION APPROACH

The constraints on the measurement errors discussed in the
previous sections can be used in finding an optimal solution
to the localization problem after formulating the problem as
a constrained optimization problem [28], [29]. In this paper
we will illustrate the proposed concept via a constrained
least squares optimization problem. In R

2, we consider the
following objective function

f(e1, e2, e3, . . .) = e2
1 + e2

2 + e2
3 + . . . (18)

In the R
2 case, we want to minimize the cost function in

(18) subject to the system of constraints ci−2(e1, e2, ei) = 0
for i ∈ {3, . . .} where each ci−2(e1, e2, ei) is in the form of
equation (2) or (7). In R

3, we consider the following objective
function

f(eθ12, eφ12, eθ21, eφ21, . . .) = e2
θ12 + e2

φ12 +

e2
θ21 + e2

φ21 + . . . (19)

In the R
3 case, we want to minimize (19) subject to the

system of constraints ci−1(eθ1i, eφ1i, eθi1, eφi1) = 0 for i ∈
{2, . . .} where each ci−1(eθ1i, eφ1i, eθi1, eφi1) = 0 is in the
form of equation (12).

The formulas (18) and (19) can be thought of as coming
up with a maximum likelihood estimation of the errors, given
that they satisfy the particular constraints and that the errors
(viewed as random variables) are mutually independent and

have the same variances. If the variances are different and/or
the errors are correlated, then given an a priori estimate
of the variances or covariance matrix we can modify the
formulas (18) and (19) to the required form f = eTΣe where
e is an appropriately constructed error vector and Σ is the
corresponding covariance matrix associated with e.

Remark 3: It is important to note that the algorithm we
outline is adaptable to other cost functions. The least squares
approach is only equivalent to the maximum likelihood ap-
proach under the usual Gaussian assumptions. There may be
cases when an L1 norm or a different cost function is better
suited to the problem. For example, the L1 norm is generally
considered more robust against large outliers.

Due to the nonlinearity of the constraints we employ the
Sequential Quadratic Programming (SQP) technique [28],
[30] to solve the required optimization problem. Sequen-
tial Quadratic Programming mimics Newton’s method for
unconstrained optimization. Consider the following general
nonlinear programming problem

argmin f(x)
s.t. c(x) = 0 (20)

where f(x) is a nonlinear objective function and c(x) is a
sufficiently differentiable nonlinear constraint function. The
Lagrangian function associated with the problem (20) is

L = f(x) + λT c(x) (21)

At the ith iteration, let xi be an estimate of the optimal
solution x∗ and let λi be an estimate of the associated optimal
Lagrange multipliers λ∗. Therefore, we can approximate the
problem (20) by the following quadratic programming problem
at the ith iteration

argmin
1
2
pTHip + ∇f(xi)T p

s.t. ∇c(xi)T p + c(xi) = 0 (22)

where H is the Hessian of the Lagrangian (21). A solution pi

solves the problem (22) if and only if the standard Karush-
Kuhn-Tucker (KKT) equations are satisfied with a given μi.
That is,[

Hi −∇c(xi)T

−∇c(xi) 0

] [
pi

μi

]
=

[ −∇L(xi, λi)
c(xi)

]
(23)

for some pi and μi. The updated estimates of x∗ and λ∗ are
therefore calculated by

xi+1 = xi + αipi (24)

λi+1 = λi + αiμi (25)

where αi ∈ (0, 1] is an adjustable step-size parameter chosen
to satisfy the so-called Wolfe conditions [31], [32]. The
algorithm is iterative and terminates when the step change
is less than a pre-determined tolerance γ ≥ 0 such that
‖xi+1 − xi‖ ≤ γ.

A logical choice (assuming zero-mean errors) for the initial
error estimates is e = 0 where e = [e1, e2, e3, . . .]
or e = [eθ1i, eφ1i, eθi1, eφi1, . . .] is the error vector. The
initialization is geometry-invariant and the initial estimate
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corresponds to a meaningful statistic of the parameter being
estimated since in the majority of cases the mean error values
are assumed known. Hence, our algorithm provides a non-
trivial and practically important advantage over the traditional
formulated maximum likelihood algorithm. Since the TML
techniques optimize directly against the target location, they
often require an initial estimate of this position. A meaningful
and accurate statistic of the true target location is much more
difficult to obtain when compared to the statistics of the
measurement errors.

Following the convergence of the optimization algorithm we
have an estimate of the measurement error vector e. According
to the constraints ((2), (7) or (12)) and ((1) or (12)), it is this
error value subtracted from the corresponding measured angle
value that results in equation consistency along with estimates
of the true angle values. Therefore, we subtract the appropriate
error from the appropriate measured angle (e.g. in (1) or
(12)) and localize the target with any closed-form triangulation
method. It is possible to solve any well-determined subset of
the overdetermined equation system for the unique location
solution.

Remark 4: When the measurement errors are assumed
small it may be possible to replace the nonlinear constraints
given in Theorems 1, 2 and 3 by their small angle approx-
imated counterparts. That is, we can employ the following
trigonometric approximations; sin(ei) ≈ ei and cos(ei) ≈ 1
etc. When the angles are given in radians, the approximation
sin(ei) ≈ ei exhibits an approximate error of 1% at about
π/12rads (or 15o). Furthermore, in such a case the multipli-
cation eiej can be approximated as eiej ≈ 0 (again for ei =
ej < π/12rads (or 15o) we have eiej < 0.0685). Noting that
π/12rads (or 15o) is a rather large error, this approximation
may be acceptable in some applications. Following the same
reasoning it is possible to approximate any higher order term
(e.g. eiejek) by 0. The result is an affine linear constraint and
a simple optimization problem (e.g. least squares) that can be
solved analytically very easily. Thus, we have a closed-form
analytical alternative to the numerical SQP algorithm for small
error environments and good localization geometries.

We employ the Matlab Optimization Toolbox (2006, v3)
function fmincon to implement the SQP technique.Although
the specific details may vary from one implementation of SQP
to another, in our case the specific implementation should not
greatly effect the optimization performance.

V. NUMERICAL SIMULATION

In order to illustrate the proposed localization algorithm we
perform a number of illustrative examples. The goal of these
simulations is to illustrate the superior performance of our
GCLS algorithm in geometries traditionally adverse to accu-
rate localization performance. We compare the geometrically
constrained optimization algorithm developed in this paper
(denoted GCLS) against the traditional maximum likelihood
algorithm (denoted TML) and against the simple closed-
form mean location calculation (denoted MEAN). The GCLS
algorithm is initialized with ei = 0 while the TML algorithm
is initialized with the closed-form mean location estimate. The

numerical (iterative) algorithms are said to diverge when the
RMS position errors go above ±106.

A. Examples in R
2

The errors in the azimuth bearing measurements obey a
zero-mean Gaussian distribution with standard deviation de-
noted by σθ .

1) Non-Collinear Sensors: We examine the performance
of the constraint given in Theorem 1 first. We consider
three sensors and a single target. We explore the localization
techniques discussed in a geometric environment well-suited
to accurate localization. We consider the scenario given in
Figure 4 (a).

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

x−direction (m)

y−
d
ir
e
ct

io
n
 (

m
)

Sensor1
Sensor2
Sensor3
Target−True

1 1.5 2 2.5 3 3.5 4 4.5 5
10

0

10
1

10
2

Bearing Standard Deviation (deg)

R
M

S
E

RMSE−Closed
RMSE−GCLS
RMSE−TML

GCLS and TML RMSE Plots 
are Almost Identical in the

Good Localization Geometry

(a). (b).

Fig. 4. In (a). the good localization geometry is illustrated. In (b). the RMSE
over 1000 simulation runs is given.

In Figure 4 (b) we plot the RMS position errors for the
GCLS, TML and MEAN estimates for a bearing standard
deviation ranging from σθ = 1o to σθ = 5o and over 1000
simulation runs. In the good localization geometry depicted
in Figure 4 (a) we observe the GCLS and TML algorithms
outperform the MEAN estimate as expected. Moreover, we
notice that the TML and GCLS algorithms perform almost
exactly the same. This is because both algorithms are essen-
tially different parameterizations of the maximum likelihood
technique. However, we will subsequently show that in ad-
verse localization geometries our algorithm will significantly
outperform the TML algorithm which requires an initial esti-
mate that is geometry-dependent while our GCLS algorithm’s
initialization is geometry-invariant and can be related to known
error statistics such as the error mean values.

Therefore, we now consider the scenario depicted in Figure
Figure 5 (a) where the target location relative to the sensor
poisitions is clearly adverse to accurate localization. In this
simulation we expect the TML algorithm to diverge in at least
a number of simulation runs due to poor initialization.

In Figure 5 (b) we plot the RMS position errors for the
GCLS and MEAN estimates for a bearing standard deviation
ranging from σθ = 1o to σθ = 5o and over 1000 simulation
runs. From Figure 5 (b) we notice that the GCLS algorithm
significantly outperforms the MEAN estimate as expected. The
TML algorithm is not plotted in Figure 5 (b) since it diverges
in too many simulation runs as indicated in Table I while the
GCLS algorithm diverged in none.

When the TML algorithm did converge it’s performance was
comparable with the GCLS algorithm as shown in the previous
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Fig. 5. In (a). the adverse localization geometry is illustrated. In (b). the
RMSE over 1000 simulation runs is given.

TABLE I

DIVERGENCE OF THE TML ALGORITHM IN R
2 WITH BAD GEOMETRY

Standard Deviation σθ 1o 2o 3o 4o 5o

Approx. Divergence % 2 10 10 10 15

simulation example. It is well known that the initialization
of nonlinear least squares algorithms is a significant factor
in convergence of numerical algorithms. However, we have
shown that our algorithm can be initialized in a geometry
independent fashion using known (or assumed known) error
statistics. We believe these simulations illustrate that this by no
means a trivial advantage over traditional maximum likelihood
localization techniques which cannot easily be initialized with
an accurate statistic. Since the TML algorithm is initialized
with the closed-form MEAN estimate it is also reasonable to
conclude that as the measurement noise increases or the ge-
ometry becomes more adverse and hence the MEAN estimate
performs worse, then it will be even more difficult to initialize
the TML algorithm.

2) Multiple Sensors and Constraints: Now we will turn
our attention to the case involving multiple constraints. Let us
assume that we have three collinear sensors and a fourth sensor
that is not collinear with any multiple combination of the other
sensors. Hence, we can derive two independent constraints of
the form

c1(e1, e2, e3) = 0
c2(e1, e2, e4) = 0

where the form of the constraints may both be as (10) or
the one for the three collinear sensors may be as (2). Since
the constraints of the form (10) account for all geometric
configurations we will consider both constraints to be of
this form. In good localization geometries it can be shown,
as expected, that the TML algorithm performs comparably
with the GCLS algorithm and both optimization approaches
outperform the MEAN estimate. Thus, for brevity, we will
only consider geometries adversely suited to accurate lo-
calization. The scenario is depicted in Figure 6 (a) where
the target location relative to the sensor poisitions is clearly
adverse to accurate localization. Moreover, the long target
range illustrated means the target appears almost collinear with
the sensors depicted in Figure 6 (a).

In Figure 6 (b) we plot the RMS position errors for the
GCLS and MEAN estimates for a bearing standard deviation
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Fig. 6. In (a). the adverse localization geometry is illustrated. In (b). the
RMSE over 1000 simulation runs is given.

ranging from σθ = 1o to σθ = 5o and over 1000 simulation
runs. From Figure 6 (b) we notice that the GCLS algorithm
significantly outperforms the MEAN estimate as expected. The
TML algorithm is not plotted in Figure 6 (b) since it diverges
in too many simulation runs as indicated in Table II while the
GCLS algorithm diverged in none.

TABLE II

DIVERGENCE OF THE TML ALGORITHM IN R
2 WITH MULTIPLE

CONSTRAINTS AND BAD GEOMETRY

Standard Deviation σθ 1o 2o 3o 4o 5o

Approx. Divergence % 5 15 15 20 20

.
When the TML algorithm did converge it’s performance was

comparable with the GCLS algorithm as shown in the previous
simulation examples. Again we have shown that our algorithm
can be initialized in a geometry independent fashion using
known (or assumed known) error statistics and we believe
these simulations illustrate that this by no means a trivial
advantage over traditional maximum likelihood localization
techniques.

B. Examples in R
3

Similarly to the R
2 problem we will now examine the

localization problem in R
3. The errors in the bearing measure-

ments obey a zero-mean Gaussian distribution with standard
deviation denoted by σθ = σφ.

In R
3 is can again be shown that in good localization

geometries that the TML algorithm preforms comparably
with the GCLS algorithm and both optimization approaches
outperform the MEAN estimate. Thus, for brevity, we will
only consider geometries in R

3 adversely suited to accurate
localization. The scenario is depicted in Figure 7 (a) where
the target location relative to the sensor poisitions is clearly
adverse to accurate localization.

In Figure 7 (b) we plot the RMS position errors for the
GCLS and MEAN estimates for a bearing standard deviation
ranging from σθ = σφ = 1o to σθ = σφ = 5o and over
1000 simulation runs. From Figure 7 (b) we notice that the
GCLS algorithm significantly outperforms the MEAN estimate
as expected. The TML algorithm is not plotted in Figure 7 (b)
since it diverges in too many simulation runs as indicated in
Table III while the GCLS algorithm diverged in none.
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Fig. 7. In (a). the adverse localization geometry is illustrated. In (b). the
RMSE over 1000 simulation runs is given.

TABLE III

DIVERGENCE OF THE TML ALGORITHM IN R
3 WITH BAD GEOMETRY

Standard Deviation σθ = σφ 1o 2o 3o 4o 5o

Approx. Divergence % 95 95 95 95 95

.
From Table III we note that the TML algorithm diverges

in practically every simulation run for the adverse geometric
localization problem depicted in Figure 7 (a). When the TML
algorithm did converge it’s performance was comparable with
the GCLS algorithm as shown in the previous simulation
examples. Again we have shown that our algorithm can be
initialized in a geometry independent fashion using known
(or assumed known) error statistics and we believe these
simulations illustrate that this by no means a trivial advantage
over traditional maximum likelihood localization techniques.
Similar results in R

3 can also be shown with multiple sensors
and constraints.

C. General Discussion

From our simulations we note that the constrained optimiza-
tion estimate outperforms the other approaches illustrated in
particular in adverse localization geometries. The traditional
maximum likelihood (TML) approach unfortunately suffers
from initialization problems and in general is not practically
suited to localization in such geometries, albeit the underlying
goal of TML is to find an optimal location solution. Our
GCLS algorithm addresses the practical problems inherent in
the TML algorithm by removing the effect of the geometry
on the initialization routines. That is, our GCLS algorithm
initialization is geometry-invariant and only depends on the
expected values of the measurement errors. Hence, our algo-
rithm is both theoretically and practically justified to perform
optimally in such geometries. In R

3 we can particularly see
the advantage of the geometrically constrained localization
algorithm over both the simple closed-form approach and over
the traditionally formulated maximum likelihood algorithm.

Finally we have remarked previously that although we
employ a least squares objective function, we are by no means
restricted to doing so. Our geometric constraint is invariant to
the cost function associated with the optimization problem.
Therefore, if it turns out that some other objective is better
suited to a given problem then it is a simple matter to adapt
our approach appropriately.

VI. CONCLUSION

This paper introduced a constraint on the errors in bearing-
measurement based localization systems. The constraint we
have derived accounts for the underlying geometry, mea-
surements and the nature of the true bearing errors and it
is invariant to the cost function. The localization problem
is formulated as a constrained optimization problem and
the resulting location estimate outperforms the traditional
least squares (maximum likelihood) approach in a number
of respects. In particular, the iterative algorithm developed
in this paper can be easily initialized with a meaning error
statistic that is often known. The traditionally formulated
maximum likelihood approach has been well-known to suffer
from initialization problems leading to divergence.
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