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A B S T R A C T

To guarantee the road safety by avoiding collisions at the intersections is one of the major tasks of
intelligent transportation systems (ITSs), which contributes to the minimal fatalities and property
loss in crashes. This paper proposes an effective algorithm for infrastructure-cooperative inter-
section accident pre-warning system with the aid of vehicular communications. The proposed
algorithm realizes accurate and efficient collision avoidances through five steps, i.e., defining
variable, reasoning the vehicles evolution state, verifying safe driving behavior, assessing risk,
and making decision. The critical factors are theoretically analyzed, and a vehicle state evolution
model based on the Dynamic Bayesian Networks (DBNs) is established. The efficient risk as-
sessment method based on identifying the dangerous driving behavior at intersection and dif-
ferent collision avoidance strategies are proposed according to the actual situation. Finally, ex-
tensive simulations are carried out to verify the performance of the proposal, and simulation
results show that the proposed algorithm can effectively detect risk and accurately migrate the
collision.

1. Introduction

Traffic accident at the intersections is one of the biggest global killers in urban traffic. Intersections are the vital traffic com-
ponents of traffic networks in which a large volume of vehicles from different directions come together and steer freely at a high
speed, making a high possibility for traffic accidents (Lei and Cristofer, 2016; Marchesini and Weijermars, 2010). In 2015, of all
police-reported traffic accidents in European Union (EU), accidents occurred at intersections took the total number of fatalities to
26,161 (European Road Safety Observatory (ERSO), 2016; Department for Transport, 2016). In the United States (US), more than 5
million accidents occurred at intersections or intersection related roadways in 2015, accounting for around 47.2% of all accidents,
with an estimated economic cost of $114 billion (World Health Organization, 2012; National Highway Traffic Safety Administration,
2016).

For decades, traffic rules and intersection infrastructures (e.g. traffic lights, stop sign and roundabout) have been practically
applied to ensure the safety of intersection traffic (Lei and Cristofer, 2016). However, traditional solutions are not working when
drivers are at poor health states, encountering illumination changes or bad weather scenarios (e.g. heavy snow, fog and haze) (Yan
et al., 2016; Francesco et al., 2015). A recent solution is to install collision warning devices in cars that monitor and predict the
surrounding environment, which are mainly based on multi-sensors, to warn the corresponding driver if a potential collision is
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detected. However, such equipment can be very expensive and only affordable by luxury car models, and thus impractical for large-
scale commercial use (Francesco et al., 2015; Inman and Davis, 2011). More importantly, the vehicle-mounted sensors are typically of
short sensing range and can be easily blocked by buildings or other vehicles; it may be too late for drivers of poor states to take
actions based on the sensed information only.

To report and avoid potential risks in a wide range in a scalable yet cost-effective way, the infrastructure-based warning systems
under the umbrella of ITSs have recently been proposed. In specific, the ITSs deploy communication devices at the roadside as well as
intersections (e.g., on traffic light) and send periodic road information to upcoming vehicles using non-light-of-sight wireless com-
munications. Furthermore, the real-time information exchange enables connection and cooperation between road users, infra-
structure and control centers, forming cooperative ITS (C-ITS). Note that most of the traffic accidents happening at intersections
result from drivers’ misjudgment on the current states, perception failures and faulty operations. The inclement weather can also
affect speed control, and brake performance, leading to severe traffic accidents. The ITSs, by incorporating the mobile computing and
artificial intelligence to learn the driver’s health condition (Yu et al., 2016) and adapting to road and weather conditions, allow
upcoming vehicles in a wide range to learn potential hazard. With the aid of vehicle control technologies and vehicle automation, the
drivers even the vehicles can adopt appropriate operations in time to avoid accidents (Campos et al., 2017).

With the advancement of the ITSs, extensive works have been carried out, including system design (Misener, 2010; Tan and
Huang, 2006), intelligent traffic signal setting (Fayazi and Vahidi, 2016), cooperative intersection scheduling and management (Lio
et al., 2017; Colombo and Vecchio, 2015), and collision avoidance algorithm (Xiang et al., 2014; Ba et al., 2017), etc. Among these
works, we are attracted by the designing of collision warning/avoidance system. Particularly, the prediction and decision-making
algorithms which applied at different components are the core parts of collision warning/avoidance systems (Kim et al., 2015;
Brännström et al., 2013). Mathematical theories, mathematical optimization and artificial intelligence have been applied for algo-
rithmic design (Lei and Cristofer, 2016; Xiang et al., 2014; Joseph et al., 2011). Despite previous important works, we notice that two
significant problems are not fully addressed: the complex traffic environment and some unpredictable driving behavior.

The design of such algorithms and systems is challenging due to the following issues: (1) complex road environment, in that two or
more roads cross each other and the road situation as well as sensory observations evolve over time; (2) dynamic interactions among
vehicles, in which multiple activities have the potential for conflicts resulting in crashes; (3) noised data, in that incomplete data
acquired from sensors usually exists different degrees of uncertainty due to ambient noise, sensors’ systematic errors, and the re-
liability of data transmission; (4) immediate actions, in that decision must be made accurately and quickly. The challenges indicate
that the algorithms and systems have high requirements on computational capabilities, communication capacity, reliability, latency.
Therefore, it is necessary to develop a cost-effective yet adaptive technology that can simultaneously address all above challenges,
which motivates our work.

This paper proposes an collision warning/avoidance algorithm for infrastructure-cooperative accident pre-warning system. We
consider an accident scenario where two vehicles in different directions driving on a two-way stop-controlled intersection with traffic
lights. In particular, some critical factors are analyzed firstly. We also propose prediction and risk assessment algorithms, and dif-
ferent strategies are implemented to avoid accidents according to the situation. The main contributions of the paper are threefold:

• Analysis: The critical factors, i.e. timing factor, communication and positioning factor, are detailed analyzed in this paper.
Particularly, we analyse why they occur and how they can affect the performance of collision warning algorithm, which will
provide reference for algorithm design.

• Algorithm: A prediction algorithm is realized by establishing the vehicle state evolution model which based on Dynamic Bayesian
Networks (DBNs). It allows the prediction of the possible states of upcoming vehicles from current and previous states with
uncertain contextual information. In addition, we take the human factors and road conditions into account, which makes the
model more practical and applicable to real-world scenario.

• Validation: The evaluation of a risk situation is based on distinguishing safe behaviors and drivers’ intention at the intersection.
The risk assessment method can avoid the complex trajectories prediction, which will satisfy the requirements of rapid decision-
making.

The remainder of this paper is organized as follows. The related works, including trajectory prediction algorithms and collision
avoidance systems, are reviewed in Section 2. Section 3 depicts overall diagram and analyses the effect factors. Section 4 describes
the process of realizing the collision avoidance in detail, which contains vehicle state evolution model, risk assessment and collision
avoidance algorithm. Section 5 evaluates the performance of proposed algorithm using simulations, and Section 6 concludes the
paper.

2. Related works

Driven by the growing user and application requirements, Collision Warning Systems (CWSs) (Córdoba et al., 2017), as an
important component of the ITSs, plays an prominent role in traffic safety. Particularly, the collision warning/avoidance algorithm is
the core of the CWSs, which has obtained extensive research.

Heretofore, the most popular algorithms for the collision detection and avoidance are based on trajectory prediction and risk
assessment. It was observed by researchers in Katrakazas et al. (2015) that the existing methods for vehicle trajectory prediction can
be classified into three levels: physics-based motion models, maneuver-based motion models and interaction-aware motion models.
In Funke et al. (2017), a new control structure was proposed, which integrates path tracking, vehicle stabilization, and collision
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avoidance. Considering collision warning timings, the authors in Xiang et al. (2014) proposed a DSRC-based collision warning system
using vehicle kinematics (VK) model for calculating vehicle trajectories. Nevertheless, they are limited to a short-time prediction as
well as unable to take into account the driver and environment. In the work presented in Lytrivis et al. (2011), a cooperative path
prediction algorithm for safety applications was proposed to calculate all connected vehicles’ future paths by gathering their current
state information. More recently, a novel method for risk assessment at intersection was implemented in Lefèvre et al. (2012, 2013),
where a Dynamic Bayesian Network (DBN) is proposed to model vehicles motion pattern and driver behavior detection.

The applying of communication technology provide a tremendous opportunity with researchers to study various novel warning
model algorithms. Based on V2V communication and control theoretic methods, an efficient decentralized algorithm for intersection
collision avoidance was proposed in Hafner et al. (2013). The uncertainty and communication delays are taken into account in their
models, whereas the inter-dependencies between vehicles’maneuvers are ignored. Based on inter-vehicle communications and GPS, a
future-trajectory-prediction-based cooperative CWS was explored in Tan and Huang (2006), which computed and communicated
vehicle states information and predicted future trajectories for collision decision making. Considering collision avoidance timings,
Tang and Yip (2010) proposed a DSRC-based collision detection system for calculating vehicle trajectories and providing effective
warning to drivers.

In addition, a number of researchers studied collision warning or avoidance models by utilizing some well-known methods in
other fields. Considering behavioral and physiological features, a supervised learning model was introduced for crash prediction (Ba
et al., 2017). By using enough data to learn models for specific dangerous events, a classification algorithm for identifying dangerous
behaviors was proposed in Aoude et al. (2012), where the likelihood of observations is used to match the model which best explains
the current state. In Xiang et al. (2014), neural network (NN) was utilized for establishing emergency warning model. In Joseph et al.
(2011), a Bayesian nonparametric algorithm was designed to model vehicles mobility pattern.

In order to alleviate the dangerous situation at the intersection, numerous efforts technical approaches have been made.
Alessandro and Domitilla Colombo and Vecchio (2015) designed least restrictive supervisors for collision avoidance at traffic in-
tersections. In Alonso et al. (2011), authors studied the collaborative driving strategies among three vehicles and presented two kinds
of decision algorithms aiming at resolving the intersection traffic conflicts. However, most of current algorithms are unable to
completely satisfy the practice requirements because of the complex road layout and traffic rules of intersections. In addition, few
researches thoroughly considered the critical factors, such as timing, communication, and positioning, that provide seriously in-
fluence on system performance and practical application. Therefore, this paper takes the research in the aspect of intersection
collision avoidance a step further by investigating these factors and their impact on the collision warning/avoidance, which would be
helpful for algorithm design and performance evaluation. The goal of collision avoidance is achieved by establishing vehicle state
evolution model, verifying safe behavior, risk assessment and collision avoidance algorithm, which are introduced in subsequent
sections.

3. Preliminary analysis of algorithm design

In this section, we will first describe the collision scenarios, as shown in Fig. 1. Then we carefully analyse the influencer to initiate
the algorithm design.

3.1. Road intersection collision scenario designs

To develop efficient countermeasures, collision scenarios along with the causal factors on intersections need to be studied. Several
different scenarios are defined based on traffic lights conditions, vehicle states and driver traffic rule violations. The crash scenarios
are illustrated in Fig. 1(b). Each of them involves a two-way stop-controlled intersection layout with traffic lights, a “Subject Vehicle”
(SV) and an “Other Vehicle” (OV). The SV’s trajectories are shown in red while the OV’s trajectories are shown in green. Yellow

Fig. 1. Collision scenarios at intersection: (a) communication mode; and (b) simulated scenario and critical points for collision avoidance.
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diamonds represent the collision area. There is no pedestrians jamming, and V2V, V2I communications as well as GPS are available
during the entire process. Moreover, the vehicles on the road with green light usually move at relatively high speeds, which means
accidents typically resulted from the SV drivers misjudging the speed, distance and available time gaps (i.e. run a red light). Summing
up the above analysis, a collision is caused by insufficient response time, which makes it difficult for the driver to avoid an accident in
a limited time. Some important time point shown in Fig. 1(b) is defined in Table 1.

3.2. Critical parameter analysis

We analyse the critical factors to enhance prediction and decision-making algorithm in this subsection.

3.2.1. Timing parameters analysis
When vehicles enter the infrastructure’s communication range, the preliminary test phase begins. For this phase, vehicles and the

infrastructure exchange their status data, and then the potential collision will be detected by calculation and prediction. Therefore,
the Tt can be dissected as follows:

plt com cpt

com pdt cld dmk

= +
= + + +

T T T
T T T T( ) (1)

The computation time cptT depends on real-time performance of the warning system, which mainly consists of prediction time pdtT ,
collision detection time cldT and decision-making time dmkT . The central control processor utilizes the status information (e.g. vehicle
speed, position, traffic light state) to compute and predict whether there is any potential danger. If a potential collision is detected,
the corresponding mitigation strategy will be determined quickly. The real-time performance of the system is an important factor as
the driver and vehicle need enough time to react to the hazard situation. In fact, the computation process lasts/(does not stop) until
the danger is eliminated. It is expected that a computation process completes within 200ms (Tang and Yip, 2010).

The communication time comT is another important factor that affects the performance of the warning system. Obviously, the
higher the communication time is, the less time for the driver to react the hazard situation. In addition, when the status data is
exchanged, the vehicles may no longer be their previous state because of the time delay, thus providing erroneous data for the control
processor to compute. Generally, the communication time comT includes transmission delay tdlT and propagation delay pdlT and would
vary depending on the communications channel condition.

com tdl pdl= +T T T (2)

The propagation delay can be ignored due to its small value of several microseconds, e.g., transmission range of 300m and
propagation rate of ×3 108 m/s. For safety-related applications, single-hop communication is widely used for efficient information
transmission, which has the expected delay less than 100ms. In Ghadimi et al. (2011), the authors propose an analytical model to
accurately analyse transmission delay in single-hop and multi-hop wireless ad hoc networks. According to the analytical model, the
average single-hop transmission delay tdlA is the sum of the average service time serA and the average queuing delay qdlA :

tdl ser qdl= +A A A (3)

The driver reaction time dvrT , which consists of the driver perception time dptT and the driver operation time dotT , can vary
depending on the driver’s age, gender, status, driving years and so on. In Yan et al. (2015), the authors investigate the different driver
reaction conditions and analyse the proper warning timing for avoiding the red-light-running collisions. Generally speaking, warning
timing is a critical factor for the driver to avoid a collision, thus the driver’s current status should be taken into account in prediction
phase and collision avoidance phase. Research shows that most of the driver reaction time is about 1.5–2.5 s (Kuang et al., 2015;
Aoude et al., 2012; Rafal and Tomasz, 2014).

dvr dpt dot= +T T T (4)

Table 1
Description of the important time point.

Symbol Description

sstt Time point where the vehicle’s state testing is started
rlst Time point where a warning information is released
smdt Time point where SV should start moderate decelerating
sedt The last moment where SV should start emergency decelerating
swit Time point where SV ignores the warning, and warning should be sent to OV to avoid collision
pltT Preliminary test time

comT Communication time
dvrT Driver reaction time
brtT Vehicle brake reaction time

r
maxT Maximum reaction time

mbkT Deceleration time under moderate braking (with moderate deceleration)
ebkT Deceleration time under emergency braking (with maximum deceleration)
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In addition, the vehicles which are equipped with the ABS have lower sensitive degree on warning timing. In this case, the driver
reaction time is absent, and the reaction time of the ABS can be ignored due to its small value.

3.2.2. V2V communication and distance analysis
For intersection collision scenario, the effective braking distance is far less than the vehicle’s communication range. Fig. 2 shows

an example. Assuming that the vehicle’s communication range is 250m and no obstacles block the vehicle communication, the
distance for a vehicle to stop before the intersection (for SV is 200m, and for OV is 150m) is less than this distance. Removing the
perception time, communication time and reaction time (with the driving distance d1), there is not nearly enough time for the SV to
stop before the intersection (effective braking distance d2), especially under the condition of high speed as well as the bad weather.

In addition, performance of wireless ad hoc networks is constrained by various kinds of interference (Wang et al., 2012). Authors
in Schumacher et al. (2012) find that the reliability and timeliness of V2V communication can drop quite significantly due to
environment and the layout of the intersections. Particularly, the channel path loss is strong when the vehicles are far away from the
intersection. Because the intersection collision warning system’s timeliness demand is rigorous, there are some downsides to relying
solely on V2V communication. The higher latency can lead to out-of-date information, and even miss the optimal warning time for
the system. Therefore, in order to provide an efficient and real-time intersection collision warning system, V2I communication should
be considered for cooperation and extending the communication range.

3.2.3. Positioning error analysis
Positioning service is indispensable in current ITSs (Han et al., 2016). An additional issue is the GPS positioning error which could

result in the deviations between the obtained position information and the current real position. A great deal of prior work has been
proposed that the GPS positioning data is subject to the zero-mean Gaussian distribution (Miura et al., 2015). Based on the real GPS
positioning data, we further adopt Kolmogorov-Smirnov test by Statistical Product and Service Solutions (SPSS) in order to theo-
retically verify the distribution of GPS positioning data. The results reflect the Gaussian distribution characteristics of the data.

Then we analyze the GPS positioning error errD , which can be decomposed as Eq. (5).

err ser rer= +D D D (5)

The system errors serD , which is caused by external interference, contributes same error to every GPS receiver within certain
distance range. That is to say, system error is usually a constant, which leads to the same direction with several meters deviations. In
addition, the inner noise of the GPS receiver leads to random errors rerD that the GPS points randomly distributed around the actual
position. According to Castro et al. (2016), the random errors Drer obey a Gaussian distribution with mean zero, thus the pdf
(probability density function) of errD is:

err
err

⎜ ⎟= ⎛
⎝

−
− ⎞

⎠
f D

π σ
D μ

σ
( ) 1

2
exp

( )
2

2

2 (6)

where the μ equals 0, and σ can be calculated.
Let us take the U.S. government’s report as an example, real-world data show that the GPS receivers will provide better than

accuracy of 4.218m at a 95% confidence level (Federal Aviation Administration GPS Product Team, 2016). Therefore, we can obtain:

err ∫= −

=
−∞ ( )D dxΦ( ) exp

Φ(4.218) 0.975

D
π σ

x
σ

1
2 2

er 2
2

(7)

where the errDΦ( ) represents the distribution function of errD , and =σ 2.152 can be calculated.

Fig. 2. V2V communication and distance analysis.
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The above timing and positioning analyses provide us a relatively deep and comprehensive understanding on the communication
and positioning mechanism, which can help us to design a more reasonable and effective algorithm.

4. Problem formulation

In this section, we describe the process of the proposed collision avoidance algorithm, which includes the data collection, hazard
situation detection and collision avoidance strategy. Before the potential hazard situation detection, the vehicles and the infra-
structure should acquire its own status information as well as share with surrounding vehicles. In this paper, these information can be
acquired directly or indirectly from the system. When the central control processor receives the vehicles status data, the potential
danger detection is beginning. As soon as the hazard situation is detected, corresponding measures are used for collision avoidance.
Specifically, there are five steps for realizing the collision avoidance, as shown in Framework 1. The detailed process and system
implementation are then described in the subsequent subsections.

FRAMEWORK 1: COLLISION AVOIDANCE ALGORITHM

1 Define and represent the data variables:
♢ Vehicle state and road condition variables Pst

n;
♢ Driver behavioral variables Dbt

n;
2 Establish vehicle state evolution model;
3 Verify the safe driving behavior Et

n;
4 Risk assessment:

♢ Compare driver’s intention It
n and Et

n;
5 Collision avoidance:

♢ Different strategies according to the actual situation
(deliver warning information, emergency brake).

4.1. Variables definition and representation

4.1.1. Vehicle state and road condition variables
A number of factors such as the vehicle states and the road conditions in different environments based on the vehicles position,

speed, acceleration/deceleration rate, heading, turn signal state and the road condition are available in this work, which are gathered
by observation and measuring. These data are collected from onboard sensors, radar and cameras, meanwhile, these information are
sharing based on V2V and V2I communication. For each vehicle ∈n N at time t, a physical state variable is defined as:

=Ps P V A D T C( )t
n

t
n

t
n

t
n

t
n

t
n

t
n (8)

• = ∈P X Y R( )t
n

t
n

t
n 2: the vehicle position

• ∈V Rt
n : the velocity of vehicles

• ∈A Rt
n : the acceleration/deceleration rate

• ∈ +∞D [0, )t
n : the distance traveled by the vehicle

• ∈T left right none{ , , }t
n : the turn signal state

• ∈C dry wet snow ice{ , , , }t
n : the road condition, can be used to assist the calculation of the maximum braking deceleration

4.1.2. Driver behavioral variables
In addition to the aforementioned variables, there are some other behavioral variables such as driver’s intention and state we are

unable to gather by observation. Nevertheless, these variables are closely related to interactions between vehicles as well as some
uncertainties. For each vehicle ∈n N at time t, a driver behavior variable is defined as:

=Db M I S E( )t
n

t
n

t
n

t
n

t
n (9)

• ∈M m{ }t
n

i
N
1

M : the maneuver intention of the driver, with NM the number of possible maneuvers

• ∈I maintainspeed accelerate decelerate stop{ , , , }t
n : the driver’s intention maneuver at the intersection

• ∈S concentration distraction{ , }t
n : the driver’s state (e.g. distraction means the driver need longer time to react)

• ∈E maintainspeed accelerate decelerate stop{ , , , }t
n : the driver’s expectation maneuver at the intersection (i.e. safe behavior at the in-

tersection)

In general, although the driver behavioral variables is considered as the unobservable variables, they can be deduced by capturing
some observable variables.

4.2. Vehicle state evolution model

In this work, a Dynamic Bayesian Network (DBN) is utilized to model the relations of these variables and the evolution of vehicle
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state. A DBN is a way to extend Bayes nets to model probability distributions over semi-infinite collections of random variables, which
is defined to be a pair of ⎯ →⎯⎯⎯⎯⎯B B( , )1 (Al-Sultan et al., 2013; Murphy, 2009). Specifically, B1 represents the initial static Bayesian
Network (BN) which defines the prior P Z( )1 , and ⎯ →⎯⎯⎯⎯⎯B is a two-slice temporal Bayes net (2TBN) which defines −P Z Z( | )t t 1 by means of
a directed acyclic graph (DAG). If −P Z Z( | )t t 1 represents the probability of the any random variable at time slice t under the condition
of knowing the variable at time slice −t 1, we can deduce:

∏=−
=

P Z Z P Z Pa Z( | ) ( | ( ))t t
i

N

t
i

t
i

1
1 (10)

where Zt
i is the i’th node at time slice t; and Pa Z( )t

i are the parents of Zt
i in the graph; and N represents the total number of variables.

The parents of Zt
i (i.e. Pa Z( )t

i ) can either be in the same time slice t or in the previous time slice −t 1. Therefore, the relationship
between two time-adjacent slices can be modeled by utilizing the model of first-order hidden Markov with a relaxation of the
independence assumptions. The semantics of a DBN can be defined by “unrolling” the 2TBN until we have T time-slices. The resulting
joint distribution is then given by:

∏ ∏=
= =

P Z P Z Pa Z( ) ( | ( ))T
t

T

i

N

t
i

t
i

1:
1 1 (11)

It will be of great help for us to take account of some uncertain variables or states to represent the motion pattern in the context of
road traffic. The assumption for all the vehicles in the scene are set independent between each other. Fig. 3 depicts the DBN structure
at time slice −t 1 and t as well as the conditional independence between the variables. In addition, the representation of the DBN can
be decomposed as:

∏ ∏= × ×
= =

− − −P Db Ps P Db Ps P Db Db P Ps Db Ps( ) ( ) [ ( | ) ( | )]T
n

T
n n n

t

T

i

N

t
n

t
n

t
n

t t
n

t
n

0: 0: 0 0
1 1

1 1: 1
(12)

In addition, with the independence assumptions, the variables can be represented as below (Fu et al., 2016):

• For the vehicle state and road condition variables:

=
− −

− − −

− − − − −

− −

P Ps Db Ps
P V V D I M S
P D D A I M S
P A A C P T M
P P D M

( | )
( | )
( | )
( | ) ( | )
( | )

t
n

t t
n

t
n

t
n

t
n

t t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

t t
n

t
n

t
n

t
n

1: 1

1 1: 1

1 1 1 1 1

1 1:

(13)

• For the driver behavioral variables:

=− − − −

− −

P Db Db P I I S A
P S S P M M

( | ) ( | )
( | ) ( | )

t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

1 1 1 1

1 1 (14)

Each conditional probability expression is defined as below:

Fig. 3. The DBN structure at time slice −t 1 and t.

Y. Fu et al. Transportation Research Part C 89 (2018) 188–204

194



• For the maneuver is assumed as:

= =
⎧
⎨
⎩

=
− −

−
P M M m

P if M m
otherwise( |[ ])t

n
t
n

i
mt M t

n
i

P
N

1 1
1

mt M
M (15)

where Pmt M represents the probability that maneuver of drivers at time t maintaining the previous maneuver. In our scenario,
there are four possible maneuvers, i.e. straight, turn left, turn right and stop. Therefore, the number of possible maneuvers

=N 4M .

• For the distance is defined as follows with the distribution is normal:

=− − − − −P D M D I S A N μ δ( | ) ( , )t
n

t
n

t
n

t
n

t
n

t
n

D D1 1 1 1 1 (16)

where μD and δD can be extracted from the velocity described in subsequent.
• For the driver’s intention to stop model is assumed as:

= = = = ⎧
⎨⎩

=
− − − −P I I i S s A a

P if I i
otherwise( |[ ][ ][ ])t

n
t
n

i t
n

i t
n

i
mt I t

n
i

P1 1 1 1
3

mt I
(17)

where Pmt I represents the probability that driver’s intention at time t maintaining the previous intention. In our scenario, there are
four possible driver’s intentions, i.e. maintain speed, accelerate, decelerate, stop. Therefore, the number of possible driver’s
intention =N 4I .

• For the driver’s state is assumed as:

= = ⎧
⎨⎩

=
−−P S S s

P if S s
P otherwise

( |[ ])
1t

n
t
n

i
mt S t

n
i

mt S
1

(18)

where Pmt S represents the probability that maneuver of drivers at time t maintaining the previous state. In our scenario, there are
two possible driver’s state, i.e. concentration, distraction. Therefore, the number of possible driver’s state =N 2S .

• For the current position of the vehicle at time t is defined as a bivariate normal distribution of current coordinate x y( , ) based on the
maneuver Mt

n and the distance traveled by the vehicle away from the stop line:

= = =P P M m D d N μ μ σ σ ρ( |[ ][ ]) ( , , , , )t
n

t
n

i t
n

x y x y (19)

where μx and μy represent the distance d between the current position x y( , ) and the position of stop line on the path of maneuver
mi. In addition, σx and σy are the standard deviation sets for the distance. It is assumed that x and y are independent of each other,
therefore =ρ 0.

• The acceleration can indicate whether or not the driver wants to stop at the intersection. It is defined as a normal distribution:

= = =−P A A a C c N μ σ( |[ ][ ]) ( , )t
n

t
n

t
n

A A1 1 1 (20)

where μD and σD are extracted from the velocity described in subsequent sections. In addition, <A 0t
n means the driver brakes the

vehicle, otherwise the driver wants to maintain the speed or speed up.

• The turn signal state of the vehicle can implicate the driver’s intention maneuver at the intersection. We assume that:

= =−P T M m M m( |[ ][ ])t
n

t
n

i t
n

j1 (21)

What’s more, the turn signal state can indicate the driver’s intention to change the orientation or lanes.

• The velocity can also indicate whether or not the driver intends to stop at the intersection as what the acceleration does. It is
assumed that the distribution on Vt

n is normal:

= = =
= = =
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(22)

where μV is the velocity profile that is related to v1 and velocity profiles v d v d[ ( ), ( )]min max . The relative position of μV in
v d v d[ ( ), ( )]min 2 max 2 is the same as the relative position of v1 in v d v d[ ( ), ( )]min 1 max 1 .

4.3. Safe behavior verification

The expectation of the driver’s maneuver at the intersection is resulted from the current context (e.g. traffic light state, traffic rules
and other vehicle). It can be expressed as:

P E M D V( | )t
n

t t t (23)

We assume that the expectation is the safe behavior. The traffic light state transition time remaining (green light transforms to red
light for the SV) is defined as Rt . If Rt is sufficient for the SV crossing the intersection with the current speed, the behavior whether the
driver maintain speed or accelerate to go through the intersection is considered as a safe behavior. Whereas if the driver decelerates,
an accident may happen.
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Next, we discuss the condition that Rt is insufficient. The expectation of the driver’s maneuver at the intersection is to stop at the
stop line. In this work, we use a probabilistic model to calculate the necessity for a vehicle to stop with the given context. The
calculation procedures are as follows:

• For SV heading towards the intersection from d1 meters away in different scenarios with a constant velocity Sv , and the traffic light
maintains green until the vehicle arrives the stop line.

• For OV heading towards the intersection in different scenarios with a constant velocity Ov , and the traffic light maintains red until
the vehicle arrives the stop line.

• Calculate the time gap St to confirm the condition for the SV to stop at the intersection:

S R O= +t t t (24)

O r a z O

O r a z v O

max

min

⎧
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⎩

= + + ⇒
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then

S r a z S

S r a z S
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⎨
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= + + +
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1

1
3
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where Od represents the distance traveled by the OV after it passed the intersection; rw represents the single lane road width; al
represents the circular arc radius of the intersection; zl represents length of zebra stripes; Sv and Ov respectively represent the
velocity of the SV and the vOV w; represents the width of vehicles in the scene. Therefore the corresponding Stmax and Stmin can be
deduced. In addition, the SV needs to stop at the stop line if the time gap St satisfies the condition of S S S⩽ ⩽t t tmin max .

• Let stpp represents the probability that SV stops at the stop line, where the time gap St is not sufficient for this vehicle crossing the
intersection. The parameter decp denotes the probability that SV slows down as it approached the intersection. The expectation
motion model is defined as:

stp S S S

dec S S

stp dec S S
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(27)

This reasoning process is of great help to calculate the necessity for the vehicle to stop at the intersection and to wait the next
green signal phase despite the current state of traffic light is green.

4.4. Risk assessment

It is possible to deduce whether or not the driver is intended to stop at the intersection as well as the expectation operation from
the vehicle’s physical state based on the vehicle state evolution model and the safe behavior verification model. As most existing
algorithms are calculating collision probability by using trajectory prediction and potential collision detection, this work intends to
propose an algorithm which is based on distinguishing dangerous and safe driver behavior. For each vehicle ∈n N at time t, it can be
expressed as:

= =P I i E j Ps([ ][ ]| )t
n

t
n

t0: (28)

It is assumed that a b c, , and d respectively represent the driver’s maneuver at the intersection: to maintain speed, accelerate,
decelerate and stop. The result is discussed in different conditions:

For =i j, the driver’s intention is considered as a safe behavior; for ≠i j, various situations are discussed as follows:

• For = =j a i b, or d, the driver’s intention is considered as a safe behavior; if =i c, the situation may become dangerous;

• For =j b, only in the case of =i d, the driver’s intention can be considered as a safe behavior;

• For =j c, any of the maneuvers is safe behavior;

• For =j d, none of the maneuvers are safe behavior.

According to the above content, we assess the risk situation via the comparison of safe behavior and the driver’s intention at the
intersection. In addition, the driver’s intention maneuver can be deduced by the vehicle state evolution model. The dangerous
situation is defined if and only if the driver’s intention is considered as a dangerous behavior. This method can avoid the complex
trajectory prediction so that the time complexity and computation complexity can be reduced. What’s more, another advantage is its
flexibility and convenience to apply for other types of collision.
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In some non-dangerous scenarios, a warning for the driver may distract the driver’s attention and even cause the tension.
Therefore, a warning would be considered as a false alarm under the condition of non-dangerous scenarios.

According to the above definitions, the proposed method is assessed via the simulation study on different collision scenarios, and
the performance of this algorithm is evaluated by its accuracy and timeliness for identifying dangerous situation and warning the
driver.

4.5. Collision avoidance

This paragraph deals with the collision avoidance strategy (i.e. sending warning and emergency braking) which is based on the
Time-To-Collision (TTC) and Time-To-Avoidance (TTA) matrices. A collision avoidance timing analysis model is established to
provide the collision warning information for drivers. TTC is the most standard indicator related to the time remaining before the
collision occurs at their current speed. This is obtained according to Khondaker and Kattan (2015):

=
−

TTC D
v v

SO

S O (29)

where SOD is the distance between two vehicles, Sv and Ov respectively represent the projection of the relative velocity of the two
vehicles on the coordinate.

The time that the vehicle needed to stop for avoiding collision is defined subsequently. It is assumed that ∈μ (0.18,0.9) represents
the adhesion coefficient based on the road condition (e.g. =μ 0.18 means the minimum adhesion coefficient of icy pavement and

=μ 0.9 means the asphalt pavement); g represents the gravitational acceleration. Therefore the maximum braking deceleration is
defined as:

max = ×a μ g (30)

and TTA is defined as:

d
max

c V= + + +TTA v
μg

αt t tS

(31)

where d
max =t 2.5 s represents the maximum driver reaction time; c =t 0.2 s represents the average communication time (transmission

time and broadcast latency); V =t 0.5 s represents the average vehicle brake reaction time; ∈α (0,1) and ∼α N (1/2,1/6). According to
the Pauta criterion, numerical distribution in − +μ σ μ σ( 3 , 3 ) has the probability of 99.74%, therefore we assume that these numbers
are included in ∈α (0,1). In conclusion, =μ 1/2 and =σ 1/6 can be calculated.

In the process of driving, the central processor detects the potential risk and compares TTC with TTA in real time in order to
confirm whether to take different collision avoidance measures according to different situations. It is considered an accident is
avoidable if it can be perceived earlier than TTA. Particularly, vehicles can be controlled by both driver and the Automatic Brake
System (ABS) to decelerate, and uniformly retarded motion during the brake process. The collision avoidance strategy is chosen by
following illustration.

• For d
max− >TTC TTA t , a warning information delivered to the driver of SV is the most efficient strategy. One reason is that the

SV ’s intention to across the intersection earlier than the OV. Moreover, the warning time is early enough so that the driver can
alleviate the current situation via his action, and which guarantees the safety as well as comfort.

• For d
max ⩾ − >t TTC TTA 0, an emergency brake of SV is the best solution in case of an unavoidable accident to mitigate the

consequences of a collision. In this case, the warning time is insufficient for the driver to respond and execute operation on his
own.

• For =TTC TTA, it is not possible to avoid collision only by the emergency brake of the SV due to the braking time is not allowed.
Therefore, actions on OV should be taken into account to collaborate to avoid collision. A warning information need to be
delivered to the driver of OV and let him to wait at the stop line before the SV crossed the intersection. The reason is that the OV
either stops at the intersection or drives with a relatively lower speed as it just started.

4.6. Algorithm implementation

Based on wireless communications and computing technologies, the proposed algorithm can be embedded in an infrastructure-
cooperated collision pre-warning system through four main steps (i.e. sensing, communications, central control process and collision
avoidance). Specifically, the proposed algorithm concentrate mainly on central control process and collision avoidance, as shown in
Fig. 4 and described in the following:

The vehicle terminal consists of the GPS module, vehicle condition collection module, wireless communication transmission
module, and displays. And the sensing module employs vehicle-mounted sensors such as GPS, camera, speed sensor, and distance
sensor for vehicle status data collection. Then, the communication module utilize V2I and V2V communications to ensure secure and
reliable real-time data transmission between vehicles and infrastructure and inter vehicles, respectively. Based on this, the infra-
structure periodically broadcasts traffic light status data and warning information to the vehicles running on the road segments
within its communication range. Simultaneously, vehicles’ and drivers’ status data is transmitted to infrastructure as well as other
vehicles using. Afterwards, both the traffic light status data and vehicle related status data are input to the central control process
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module for potential dangerous detection, and quick decision will be made for safe driving. Particularly, the vehicle state prediction
submodule establishes the vehicle state evolution model based on DBN. Next, the collision detection submodule implements the
process of safe behavior verification and risk assessment for detecting the potential dangerous. For the hazard situation, the warning
decision-making submodule will send alarm to the on-board collision avoidance module of corresponding vehicles in different ways: A
warning information with alarm is delivered to user interface (UI) to alert the driver if early enough, and the emergency braking is
triggered by Automatic Brake System (ABS) in emergency situation. In order to improve the success rate of the collision avoidance,
vehicles could also identify the hazard situation and exchange information to notify the other vehicle to take measures.

5. Simulations and evaluations

To evaluate the performance of our proposals, we conduct extensive simulations in three steps. Firstly, we model and predict the
vehicle state and driver behavior using GeNIe (BayesFusion). Whereafter, the performance of risk assessment and collision avoidance
are evaluated by MATLAB, which enables to perform computationally intensive tasks fast and convenient.

5.1. Simulation setup

The simulation area is a two-way stop-controlled intersection layout, as shown in Fig. 1. The intersection is managed by traffic
lights, and the area for simulation is 500m×500m. We only focus on two vehicles to pass the intersection from different orientations.
Other conditions, either pedestrians on the road, or different numbers of vehicles, are not suitable for our simulation. The two
vehicles’ initial positions are randomly distributed between each road edge and the stop lines. We set different velocities and friction
coefficient of road surface to generate different simulation scenarios. The possible trajectories of two vehicles are represented with
different colors1 in Fig. 1, in which most of the reasonable conditions are considered. According to our algorithm, the simulation
parameters are introduced in Table 2, which are the appropriate values learned from the reality situation.

As introduced in Section 4, the main objective of establishing the DBN model is to predict the vehicle state and driver behavior by
inferring the unobserved high-level contextual information from the low-level observed data that is collected by sensors. Although
there are many contributory factors that affect the vehicle state, such as the vehicle, driver, road condition and weather, we select the
most important factors (as introduced in Section 4) which may lead to more accurate prediction than others.

Based on the predicted vehicle state, the evaluation of the collision avoidance algorithm is carried out in two steps. In the first
step, each of the scenarios is performed several times for risk assessment. In the second step, the performance of collision avoidance is
evaluated on the proposed algorithm which takes measures on both SV and OV (i.e. TMSO).

5.2. DBN inference for vehicle state evolution

The vehicle state evolution model combines data about the vehicle, road condition and driver that is collected via sensors for
inference process. First, the DBN nodes and the relationships among them are defined, and the DBN graph is shown in Fig. 3. The next
step is parameterising the DBN, which means determining the conditional probability table (CPT) for each node and the conditional
probability over time. Some of the conditional probability are introduced in Section 4, and the following tables show three samples of
the CPT of the proposed DBN. Table 3 shows the prior probability of the road condition node and acceleration node, respectively.

Fig. 4. Proposed strategy for intersection collision.

1 For interpretation of color in Fig. 1, the reader is referred to the web version of this article.
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Table 4 shows the conditional probability for maneuver node at time t. In this paper, the CPTs and the transferred probability are
obtained from published papers, reports database and researches (European Road Safety Observatory (ERSO), 2016; Department for
Transport, 2016; World Health Organization, 2012; Lefèvre et al., 2012; Al-Sultan et al., 2013; Zeyad, 2014).

According to the parameterised DBN, driver behavior, driver’s intention and vehicle state can be inferred. There are eight evi-
dence nodes in this network (driver behavior variables and vehicle state variables except driver’s intention), each of which has at
least two possible states. Therefore, more than 40,000 evidence combinations are set as the simulation inputs, and corresponding
vehicle state and driver behavior can be inferred over time. Because of the large amount of evidence, it is impossible to illustrate all
these possible combinations here. After abundant tests, some representative combinations and results are shown in Table 5. The
results show that the proposed model can detect different types of driver behavior and vehicle state efficiently, and the vehicle state is
consistent with driver’s intention.

Table 6 shows the comparison of vehicles’ physical state (Ps) and drivers’ intention (I) under different combinations of evidences,
which can help us further determine the factors that have a stronger impact on driver behaviors and vehicle state. As shown in the
table, four kinds of vehicle state are predicted, and each kind of situation is compared in the condition of the same factors except for
road condition and driver’s state. Driver’s state directly affect his/her judgment on the surrounding environment, which will further
influence his/her driving intention. Particularly, the relationship between acceleration and road condition is highly dependent due to
the different friction coefficient of road surface. For example, it is hard to slow down on slippery roads (i.e. ice surface), even if the
driver might step on the brake. In addition, the vehicle will keep the state prior if the driver do not take action due to the inertia.
These are the reasons which lead to the gap of probability between vehicle state and driver’s intention.

5.3. Risk assessment results analysis

In order to evaluate the warning performance of the proposed algorithm quantitatively, three evaluation indexes are defined:
correct warning rate, false warning rate and failure warning rate.

Correct warning is defined as both simulated situation and the predicted situation are consistent. Correct warning rate ctwR is the
ratio of the correct warning number and the total number of tests:

ctw
ctw

tot
=R N

N (32)

Table 2
Simulation parameters.

Symbol Name Value

vw Vehicle width 1.75m
vl Vehicle length 4m

rl Road length 500m

zl Length of zebra stripes 5m
rw Single lane road width 3.5 m
al Circular arc radius of the intersection 3.5 m
μ Friction coefficient of road surface 0.18–0.9
vv Vehicle velocity 25–50 km/h

Table 3
Prior probability for road condition node and acceleration node.

Road condition Probability Acceleration Probability

Dry 0.40079 >a 0 0.4687
Wet 0.18236 =a 0 0.1573
Snow 0.13334 <a 0 0.374
Ice 0.28351

Table 4
Conditional probability for maneuver node at time t.

t− 1

t Straight Turn_left Turn_right Stop

Straight 0.9 0.033 0.033 0.034
Turn_left 0.033 0.9 0.033 0.033
Turn_right 0.033 0.033 0.9 0.033

Stop 0.034 0.034 0.034 0.9
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where ctwN is the correct warning number; totN is the total number of tests.
False warning represents a warning initiating without actual collision. False warning rate Rfalse w is the ratio of the false warning

number and the total number of tests:

falsew
falsew

tot
=R N

N (33)

where falsewN is the false warning number.
Failure warning means that the actual collision is not detected, which can also be considered as missing alarm. Failure warning

rate failurewR is the ratio of the failure warning number and the total number of tests:

failurew
failurew

tot
=R N

N (34)

where failurewN is the failure warning number.
The results show a good performance of our risk assessment algorithm, which can be seen in Table 7. The main reason is that

position error and signal transmission delay have influences on the accuracy of the algorithm.

5.4. Collision avoidance result analysis

Successful collision avoidance means a potential accident was successfully resolved, and successful collision avoidance rate scaR is
the ratio of the number of successful collision avoidance and the total number of collision avoidance tests. Instead, flaR represents the
failure avoidance rate, which means the probability of the accident eventually happen:

sca

fla

sca

tca

sca

tca

=

= −

R

R 1

N
N

N
N (35)

where scaN is the number of successful collision avoidance, and tcaN is the total number of collision avoidance tests.
The performance of the proposed algorithm for intersection collision avoidance under different road conditions is evaluated, and

the results are listed in Table 8. For dangerous situations, our algorithm maintains good performance. Specifically, we use different

Table 5
The belief of vehicle state and driver's intention by setting different combinations of evidences.

−t 1 t +t 1

No. V (km/h) A T D (m) P(x,y) V (km/h) A T D (m) P(x,y) P_s (state and belief) I (state and belief)

Road condition=Dry, Driver’s state= Concentration, Maneuver= {straight, turn_left, turn_right, stop}
1 40 = 0 none 0–84 <x 0 40 = 0 none 0–84 <x 0 maintain direction maintain speed

=y 0 =y 0 and speed, 0.983 0.978
2 45 <0 left 167–250 <x 0 40 <0 none 250–333 =x 0 turn_left decelerate

=y 0 >y 0 and decelerate, 0.958 0.926
3 35 >0 right 167–250 <x 0 40 >0 right 250–333 =x 0 turn_right accelerate

=y 0 <y 0 and accelerate, 0.975 0.946

Road condition=Wet, Driver’s state=Concentration, Maneuver= {straight, turn_left, turn_right, stop}
4 10 <0 none 167–250 <x 0 5 <0 none 167–250 <x 0 stop stop

=y 0 =y 0 0.917 0.915
5 45 <0 none 167–250 <x 0 40 <0 none 167–250 <x 0 maintain direction decelerate

=y 0 =y 0 and decelerate, 0.987 0.986
6 40 = 0 left 167–250 <x 0 50 >0 left 250–333 =x 0 turn_left accelerate

=y 0 >y 0 and accelerate, 0.907 0.915

Road condition= Snow, Driver’s state=Distraction, Maneuver= {straight, turn_left, turn_right, stop}
7 30 = 0 none 84–167 <x 0 30 = 0 none 84–167 <x 0 maintain direction maintain speed

=y 0 =y 0 and speed, 0.694 0.72
8 5 <0 none 167–250 <x 0 0 = 0 none 167–250 <x 0 stop stop

=y 0 =y 0 0.753 0.782
9 20 >0 left 167–250 <x 0 30 >0 left 250–333 =x 0 turn_left accelerate

=y 0 >y 0 and accelerate, 0.815 0.764

Road condition= Ice, Driver’s state=Distraction, Maneuver= {straight, turn_left, turn_right, stop}
10 20 >0 none 84–167 <x 0 30 >0 none 167–250 <x 0 maintain direction accelerate

=y 0 =y 0 and accelerate, 0.883 0.734
11 10 <0 none 167–250 <x 0 5 <0 none 167–250 <x 0 stop stop

=y 0 =y 0 0.691 0.743
12 30 = 0 right 167–250 <x 0 25 <0 right 250–333 =x 0 turn_right decelerate

=y 0 <y 0 and decelerate, 0.744 0.815
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values of adhesion coefficient (μ) to represent different road conditions. As mentioned in Section 4.5, ⩽ ≤ ⩽ <μ μ0.63 0.9,0.4 0.63
and ⩽ <μ0.18 0.4 can represent the good road condition, normal road condition and bad road conditions, respectively.

In view of the common practice of the current algorithms for collision avoidance are only taking measures on SV (i.e. TMS) or OV
(i.e. TMO), the performance of collision avoidance is evaluated by comparing our algorithm (i.e. TMSO) with TMS and TMO. Fig. 5
illustrates the evaluation results. For the sake of showing, the results which less than 0.6 are set as 0.6. The results show a good
performance of our algorithm for the success avoidance rate maintains at a high level in spite of the driver reaction time is changing.
For TMS, the success avoidance rate decreases with the increase of the driver reaction time. The main reason is that for some

Table 6
Comparison of P_s and I under different combinations of evidences.

−t t1, +t 1

No. V (km/h) A T D (m) P(x,y) C S=Concentration S=Distraction

P_s I P_s I

Maneuver= {straight, turn_left, turn_right, stop}
1 40 = 0 none 167–250 < =x y( 0, 0) Dry maintain direction maintain speed maintain direction maintain speed

40 = 0 none 167–250 < =x y( 0, 0) Dry and accelerate, 0.987 0.985 and accelerate, 0.868 0.839
2 40 = 0 none 167–250 < =x y( 0, 0) Wet maintain direction maintain speed maintain direction maintain speed

40 = 0 none 167–250 < =x y( 0, 0) Wet and accelerate, 0.963 0.976 and accelerate, 0.771 0.803
3 40 = 0 none 167–250 < =x y( 0, 0) Snow maintain direction maintain speed maintain direction maintain speed

40 = 0 none 167–250 < =x y( 0, 0) Snow and accelerate, 0.909 0.931 and accelerate, 0.708 0.731
4 40 = 0 none 167–250 < =x y( 0, 0) Ice maintain direction maintain speed maintain direction maintain speed

40 = 0 none 167–250 < =x y( 0, 0) Ice and accelerate, 0.890 0.901 and accelerate, 0.682 0.714
5 35 >0 left 167–250 < =x y( 0, 0) Dry turn_left and accelerate turn_left and accelerate

40 >0 left 250–333 = >x y( 0, 0) Dry accelerate, 0.975 0.966 accelerate, 0.851 0.814
6 35 >0 left 167–250 < =x y( 0, 0) Wet turn_left and accelerate turn_left and accelerate

40 >0 left 250–333 = >x y( 0, 0) Wet accelerate, 0.953 0.958 accelerate, 0.824 0.795
7 35 >0 left 167–250 < =x y( 0, 0) Snow turn_left and accelerate turn_left and accelerate

40 >0 left 250–333 = >x y( 0, 0) Snow accelerate, 0.934 0.925 accelerate, 0.817 0.766
8 35 >0 left 167–250 < =x y( 0, 0) Ice turn_left and accelerate turn_left and accelerate

40 >0 left 250–333 = >x y( 0, 0) Ice accelerate, 0.892 0.905 accelerate, 0.797 0.743
9 40 <0 right 167–250 < =x y( 0, 0) Dry turn_right and decelerate turn_right and decelerate

35 <0 right 250–333 = <x y( 0, 0) Dry decelerate, 0.958 0.926 decelerate, 0.795 0.819
10 40 <0 right 167–250 < =x y( 0, 0) Wet turn_right and decelerate turn_right and decelerate

35 <0 right 250–333 = <x y( 0, 0) Wet decelerate, 0.935 0.911 decelerate, 0.786 0.812
11 40 <0 right 167–250 < =x y( 0, 0) Snow turn_right and decelerate turn_right and decelerate

35 <0 right 250–333 = <x y( 0, 0) Snow decelerate, 0.916 0.908 decelerate, 0.754 0.804
12 40 <0 right 167–250 < =x y( 0, 0) Ice turn_right and decelerate turn_right and decelerate

35 <0 right 250–333 = <x y( 0, 0) Ice decelerate, 0.906 0.902 decelerate, 0.734 0.795
13 10 <0 none 167–250 < =x y( 0, 0) Dry stop stop stop stop

5 <0 none 167–250 < =x y( 0, 0) Dry 0.983 0.989 0.806 0.813
14 10 <0 none 167––250 < =x y( 0, 0) Wet stop stop stop stop

5 <0 none 167–250 < =x y( 0, 0) Wet 0.955 0.978 0.775 0.797
15 10 <0 none 167–250 < =x y( 0, 0) Snow stop stop stop stop

5 <0 none 167–250 < =x y( 0, 0) Snow 0.909 0.931 0.728 0.761
16 10 <0 none 167–250 < =x y( 0, 0) Ice stop stop stop stop

5 <0 none 167–250 < =x y( 0, 0) Ice 0.885 0.927 0.691 0.743

Table 7
Performance evaluation of risk assessment.

Correct warning rate ( ctwR ) False warning rate ( falsewR ) Failure warning rate ( failurewR )

97.8% 1.25% 0.95%

Table 8
Performance evaluation of collision avoidance under different road conditions.

Collision avoidance rate ( scaR ) Failure avoidance rate ( flaR ) Road condition

98.99% 1.01% ⩽ ≤μ0.63 0.9
97.86% 2.14% ⩽ <μ0.4 0.63
96.65% 3.35% ⩽ <μ0.18 0.4
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emergency situations (e.g. bad state of the driver, insufficient reaction time), the collision can’t be avoided by only taking actions on
SV. In other words, actions on OV should be taken into account to collaborate to avoid collision. The accident cannot be avoided due
to errors of location, signal transmission delay, drivers’ response time and road condition estimation. For TMO, additional waiting
times will be added, although the performance is good. The main reason is that the SV need to wait the OV passing through the
intersection with a lower speed under any circumstances.

Subsequently, the performances of the algorithm is evaluated with different reaction time. Fig. 6 shows the successful collision
avoidance rate of the vehicles at the intersection. Observe from the figure that more collisions will occur, when there is a longer
reaction time as well as higher vehicular speed. However, the collision avoidance algorithm improves the attainable performance,
regardless of the specific situation. Nearly 94% of the potential collisions is avoided, when the vehicular speed is 40 km/h and the
reaction time is 2.5 s at the intersection.

Fig. 7 shows the successful collision avoidance rate by setting different vehicular speeds and different friction coefficient of road
surface. The total reaction time is set at 2 s. The results show that the performance reduce with the increase of the vehicle speed as
well as the deterioration of road condition. Particularly, the worse the road conditions is, the earlier the performance declines
substantially. For example, when =μ 0.4, the performance begin to decrease substantially at =v 45 km/h. Whereas the drop point
appear at =v 32.5 km/h when =μ 0.18. The main reason is that for slippery roads, the vehicle takes more time to slow down.

6. Conclusion

This paper addressed the problem of intersection collision by proposing an effective collision warning/avoidance algorithm for
infrastructure-cooperative accident pre-warning system based on V2V and V2I communications. Some critical factors were explained
and analyzed in this paper at first. Next, the vehicle state evolution was analyzed with the help of DBN, which is used to model a
temporal stochastic process. Then a warning algorithm for intersection collision avoidance was designed using the vehicles state
information, inter-vehicle communication and so forth. The evaluation of risk situation was based on distinguishing dangerous and

Fig. 5. Performance evaluation for different collision avoidance strategies.

Fig. 6. Performance evaluation for different vehicular speeds and different reaction time.
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safe driver behaviors. After that, different collision avoidance strategies were proposed to cope with the potential danger. The
algorithm was evaluated in simulation, and the results indicated the ability of the algorithm to issue a warning to the driver when a
potential dangerous situation is detected and to avoid the accident. It can be seen from the results that the maximum accuracy of risk
assessment and collision avoidance algorithm reach up to 97.8% and 98.99%, respectively, which proves that the proposed algo-
rithms can assist to improve vehicles safety at intersections.
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