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Abstract—In this paper, we propose Chimera, a novel hybrid
edge computing framework, integrated with the emerging edge
cloud radio access network, to augment network-wide vehicle
resources for future large-scale vehicular crowdsensing applica-
tions, by leveraging a multitude of cooperative vehicles and the
virtual machine (VM) pool in the edge cloud via the control
of the application manager deployed in the edge cloud. We
present a comprehensive framework model and formulate a
novel multi-vehicle and multi-task offloading problem, aiming at
minimizing the energy consumption of network-wide recruited
vehicles serving heterogeneous crowdsensing applications, and
meanwhile reconciling both application deadline and vehicle
incentive. We invoke Lyapunov optimization framework to design
TaskSche, an online task scheduling algorithm, which only utilizes
the current system information. As the core components of
the algorithm, we propose a task workload assignment policy
based on graph transformation and a knapsack-based VM pool
resource allocation policy. Rigorous theoretical analyses and
extensive trace-driven simulations indicate that our framework
achieves superior performance (e.g., 20% – 68% energy saving
without overstepping application deadlines for network-wide
vehicles compared with vehicle local processing) and scales well
for a large number of vehicles and applications.

I. INTRODUCTION

With the rapid development of autonomous driving tech-

nologies, an increasing number of vehicles are equipped with

various kinds of sensors and advanced processing units. In the

meanwhile, a variety of vehicle-to-vehicle (V2V) and vehicle-

to-infrastructure (V2I) communication technologies such as

dedicated short range communication (DSRC) and long-term-

evolution-vehicle (LTE-V) [1] become increasingly mature. As

a result, the Internet of Vehicles (IoV) is emerging and has

great potential to boost many attractive applications [2].

Vehicular crowdsensing is one of the most promising IoV

applications, which takes advantage of vehicle sensing and

processing capability as well as vehicle mobility to provide
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location-based services such as environmental monitoring and

parking lot detection in large areas [3]. In general, a vehicular

crowdsensing application requires a crowd of vehicles to

periodically sense data from immediate surroundings, in-situ

process them such as data fusion and image/video processing,

and transmit the processed results within a specific deadline to

the centralized application manager (e.g., traffic control center)

for post-processing such as spatial and big data analyses [4].

As the era of artificial intelligence and mobile Internet is

evolving, future vehicles require to execute many local pro-

cessing tasks for autonomous driving and user entertainment in

terms of QoS, privacy and security issues, and therefore they

may be feeble to match the emerging features (e.g., variety and

complexity) and requirements (e.g., data volume and process-

ing deadline) of vehicular crowdsensing applications. Also, it

should be energy-efficient for vehicles (e.g., electric cars) to

serve vehicular crowdsensing applications from drivers’ points

of view (e.g., economy issue). Therefore, in parallel with the

design of vehicle recruitment policy, how to extend vehicle

available resources to satisfy the ever-increasing application

requirements and meanwhile reduce the corresponding vehicle

processing energy is also of significance for the development

of vehicular crowdsensing industry.

Task offloading, a promising technology to augment device

resources and conserve device energy, has been extensively

investigated in both academia and industry. In the last decade,

many researchers studied mobile cloud computing [5], where

mobile devices can offload computation-intensive tasks to

the remote resource-rich clouds. Nevertheless, this paradigm

is inadequate in supporting latency-aware IoV applications,

due to the large volume of data exchange (e.g., images

and videos) and the long network distance between vehicles

and clouds. In comparison, mobile edge computing [6] is a

novel paradigm aiming to exploit a multitude of devices and

facilities (e.g., base stations and edge clouds) at the network

edge to cooperatively provide low-latency and elastic resource

augmenting services, which is promising to serve the emerging

IoV applications.

With this motivation, we propose Chimera as illustrated in

Fig. 1, a hybrid edge computing framework integrated with

the emerging edge cloud radio access network to augment

vehicle resources for crowdsensing applications. In this frame-

work, vehicles are enabled to utilize their local resources

(i.e., local computing), “fragmented resources” from nearby

vehicles (i.e., V2V-based computing), and “chunk resources”

from the virtual machine (VM) pool in the edge cloud (i.e.,
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(a) The edge cloud radio access network architecture (b) The vehicular crowdsensing service flow

Figure 1: An illustration of the Chimera framework (One of Vehicular Edge Computing (VEC) services).

VM-based computing) to facilitate sensed data processing, via

the control of the application manager deployed in the edge

cloud. Compared with the existing RSU-based edge computing

frameworks (e.g., [7], [8], [9]), our framework does not require

additional resource deployment at RSUs, makes full use of

vehicle resource sharing, and supports a variety of RAN

functionalities such as vehicle handover management and V2V

connection control. Besides, compared with the existing V2V-

based edge computing frameworks (e.g., [10], [11], [12]), our

framework takes advantage of both the powerful computing

capacity and the global system information in the edge cloud

to make optimal task offloading decisions.

In order to reap the profound benefits of our framework

for vehicular crowdsensing applications, we need to fulfill the

following requirements:

Chimera should be aware of the application heterogene-
ity. With the development of vehicular crowdsensing industry,

vehicles will support multiple crowdsensing applications si-

multaneously [3], and the specific features (e.g., processing

density) and requirements (e.g., latency) of those applications

are distinct, which requires our framework to provide suitable

management policy and task offloading scheme for heteroge-

neous applications in vehicles.

Chimera should be online and adaptive to system dynam-
ics. Due to the dynamic nature of network conditions, vehicle

mobility as well as the available resources of vehicles and VM

pool in the edge cloud [13], it is difficult to predict the future

system information, and hence our framework should operate

using the current information only.

Chimera should provide a proper incentive scheme to
encourage vehicle cooperation. Our framework will ex-

ploit cooperative opportunities among nearby “strangers”, and

hence a good incentive scheme that can effectively prevent

vehicle free-riding and overloading is highly desirable.

Chimera should be energy-efficient, deadline-aware and
scalable. Our framework should achieve optimal task process-

ing, in order to conserve the energy of network-wide vehicles

while satisfying the latency requirements of crowdsensing ap-

plications, and moreover it should be scalable to accommodate

a large number of vehicles and applications.

To address these challenges, we present a comprehensive

framework model, formulate a novel multi-vehicle and multi-

task offloading problem and devise an optimal online task

scheduling algorithm accordingly. The main contributions of

this paper are summarized as follows:

We propose a hybrid edge computing framework including

an innovative task queueing model with three kinds of task

processing modes to manage heterogeneous crowdsensing ap-

plications in vehicles (Section III). In this context, we formu-

late a novel multi-vehicle and multi-task offloading problem

aiming at minimizing the energy consumption of network-wide

recruited vehicles serving heterogeneous crowdsensing appli-

cations, and meanwhile reconciling both application latency

and vehicle incentive in the long term1 (Section IV).

We invoke Lyapunov optimization framework to realize

TaskSche, an efficient online task scheduling algorithm which

only utilizes the current system information per time slot

(Section V). As the core components of the algorithm, we

devise a task workload assignment policy based on graph

transformation and a knapsack-based VM pool resource al-

location policy for each time slot. Besides, we make a series

of discussions about the framework extensions (Section VI).

Rigorous theoretical analyses and extensive trace-driven

simulation results corroborate that our framework achieves

superior performance without overstepping the deadline of

each application, such as 20% – 68% energy saving and 1.5x –

3.6x speedup for network-wide vehicles compared with ve-

hicle local processing, 56% – 130% and 28% – 60% perfor-

mance gain compared with two state-of-the-art works (i.e.,

DualControl [14] and D2D-Fogging [15]), respectively. In

addition, our framework scales well to support a large number

of vehicles and applications. For example, the running time of

the TaskSche algorithm is less than 150 ms and 16 ms for 2000

vehicles and 200 applications, respectively (Section VII).

1We consider the long-term perspective in this paper, since most of
the vehicular crowdsensing applications (e.g., environmental monitoring and
parking lot detection) require to operate over a period.
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II. RELATED WORK

Existing task offloading researches in the mobile edge

computing domain can be broadly classified into the following

three categories.

Device-centric edge cloud computing (e.g., [16], [17], [18]),

where each mobile device can dynamically adjust its CPU

frequency and/or cellular speed in terms of QoS require-

ments (e.g., application latency) to achieve energy-efficient

task processing. However, most of the works in this category

only study the task offloading problem for a single device,

and hence their proposed task offloading schemes cannot be

applied to the practical vehicular crowdsensing applications

where multiple recruited vehicles compete for limited edge

cloud resources. Although our previous work [19] and other

game theory based works (e.g., [20], [21]) consider the multi-

device task offloading problem, they only work for the single-

task case and still do not take into account the competition for

edge cloud resources among mobile devices.

Operator-controlled edge cloud computing (e.g., [14], [22],

[23]), where an authorized task offloading controller is de-

ployed in the edge cloud to facilitate energy-efficient task

processing for network-wide devices regarding joint device

and edge cloud resources. However, since the proposed task

offloading schemes in most works target the single-task case,

they are unsuitable for the heterogeneous vehicular crowd-

sensing applications. Recently, some efficient task offloading

schemes are designed for the multi-task case (e.g., [24],

[25]). However, they work in an offline manner (i.e., the

task workload is known in advance) and hence cannot benefit

crowdsensing applications with uncertain sensed data arrival

encountered in practice. In addition, this kind of works nor-

mally assumes the device-oriented edge cloud model (i.e., mul-

tiple devices share a given amount of computation resources),

which may adversely impact the task offloading performance

with the increase in the number of recruited vehicles.

Device-centric cooperative computing (e.g., [23], [26],

[27]), where each mobile device can opportunistically exploit

the under-utilized resources from nearby devices via M2M

communications for energy-efficient task processing. This kind

of framework can benefit from the massive number of mobile

devices, while the proposed task offloading schemes highly

rely on the device mobility prediction (e.g., contact duration

and frequency) and only consider the single-device optimiza-

tion rather than the network-wide optimization. Although our

previous work [15] devises an energy-efficient cooperative

computing scheme achieving network-wide optimization, it

merely exploits a best-effort task admission model. That is,

the admitted task workload of different applications in a time

slot cannot be larger than the device local computing capacity

(i.e., no queueing model). In addition, it considers the binary

task offloading setting where the admitted task workload is

regarded as a whole task and will be either processed locally

or offloaded to process at a nearby device, which restricts the

throughput of task workload processing.

There are also task offloading works that consider compo-

nent partition and placement of mobile applications to achieve

minimum completion time or maximum workload processing

throughput [28], [29]; incorporate wireless power transfer and

energy harvesting to extend the lifetime of mobile devices [30],

[31]; study energy-efficient workload scheduling in multi-

cell or multi-clouds scenarios [32], [33]; design feasible data

dissemination and device cooperation in vehicular scenarios

[34], [35] or discuss a map-reduce case where the workload

of a “huge” task is divided and processed by a crowd of

cooperative devices in proximity to achieve low latency and/or

energy consumption [36], [37]. Compared with the existing

works, the main novelty of the Chimera framework is not
only combining edge cloud computing with cooperative
computing from the operator-controlled perspective but
also revealing the relationship among energy, latency and
incentive from a holistic perspective for heterogeneous
vehicular crowdsensing applications in network-wide re-
cruited vehicles. There are also a few researches [24], [38],

[39] on the multi-device and multi-task task offloading prob-

lem. However, they do not take device cooperative computing

into account and only touch on one-shot optimization (i.e.,

not in the online perspective). Although our recent work [40]

also considers the coexistence of cooperative and edge cloud

computing, the system model and the problem formulation are

entirely different (e.g., the single-task case without queueing

model and the time-average constraints in terms of application

latency and vehicle incentive). We should emphasize that,

the Chimera framework is not a simple merge of distinct

models from the existing works but exhibits an innovative and

comprehensive framework by taking many practical features

of the vehicles, crowdsensing applications and edge cloud into

account, which presents novel challenges in analyses.

III. FRAMEWORK MODEL

As illustrated in Fig. 1, we consider an edge cloud radio ac-

cess network scenario, in which mobile network providers co-

operate with enterprises (e.g., auto companies) or governments

(e.g., traffic control center) to build a vehicular crowdsensing

platform. Specifically, they deploy an application manager

in the edge cloud to supervise a pool M = {1, 2, . . . ,M}
of crowdsensing applications, and also deploy a series of

functional modules in the edge cloud for post-analyzing the

processed results uploaded from the recruited vehicles. In

addition, we consider that a set N ={1, 2, . . . , N} of vehicles

has registered on the crowdsensing platform (i.e., they are

willing to participate the crowdsensing service), and some ve-

hicles are recruited to run a suite of crowdsensing applications

from the application pool M. For simplicity, we assume that

each vehicle i ∈ N installs and supports each application

k ∈ M in advance. In order to augment vehicle resources to

facilitate those crowdsensing applications in the network-wide

perspective, we consider that the mobile network providers (1)

set up a specialized VM pool in the edge cloud; (2) design

an incentive scheme to inspire vehicles to cooperatively share

resources with each other; (3) propose a control scheme in

the application manager to provide the vehicle, application

and VM pool management. We assume that our framework

operates in a time-slotted pattern and each time slot t has a
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unit time length2 for simplicity.

A. Vehicle Resource Model

Computing Capacity: We consider that the available com-

puting capacity si(t) (in cycles) of a vehicle i is indicated by

the stabilized CPU working frequency Si(t) together with the

current CPU load δi(t) (i.e., percentage of occupied processing

capacity by other vehicular applications) in a time slot [15].

That is, si(t)=(1− δi(t))Si(t) in the context of the time slot

with a unit length. Note that, Si(t) and δi(t) can be estimated

by the online frequency-history window method [41].

Cellular Uplink Capacity: Each vehicle can establish a

cellular link with the nearest radio remote head (RRH). We

assume a quasi-static case where the wireless channels of

vehicles are stable during a time slot (e.g., a few seconds in

urban scenarios), while they may change across different time

slots (e.g., due to vehicle mobility) [42]. At the beginning of

a time slot, each vehicle i will choose a cellular transmission

power level pni (t) in terms of modulation schemes and power

control algorithms [15], and then it can achieve cellular

uplink capacity di(t) (in bits) as Bi(t) log2

[
1+

pn
i (t)Hi(t)
N0(t)

]
.

Here, Hi(t) is the channel gain between the vehicle i and

the RRH, Bi(t) is the bandwidth allocated for the vehicle

i (e.g., several resource blocks), N0(t) is the background

noise. Note that our framework can support other kinds of

V2I schemes (e.g., LTE-V-cell [1]), and can also capture the

cellular interference among different vehicles by introducing a

maximum interference temperature value [43], which will not

affect our algorithm design and analysis.

V2V Link Capacity: Although many kinds of V2V commu-

nication technologies (e.g., WiFi-direct, LTE-D2D, 802.11p-

based DSRC, LTE-V-direct [1]) have been discussed in the

literature, we believe only one of them will be used as the

standard in the future. In this context, we consider a resource-

constrained setting, in which each vehicle will establish and

maintain only one stable V2V link in a time slot, due to

the limited communication resource and time [15], [27]. Note

that, we will discuss the framework performance if the above

restriction of V2V link establishment is released in Section

VI-D. In practice, each vehicle i can transmit data via both

cellular uplink and V2V link simultaneously (i.e., different

transmission modes), and similar to the cellular uplink ca-

pacity, the V2V link capacity dij(t) with a nearby vehicle j
is predictable by online or offline estimation exploiting RSSI

and/or historical data rates [17], [44].

In our framework, we consider that the application manager

in the edge cloud cannot control vehicle computing capacity,

since the CPU working mode (e.g., frequency adjustment

and multi-core scheduling) is generally determined by the

vehicle operating system, and also it will not change vehi-

cle transmission management algorithms (e.g., power control

schemes) to cater for task offloading, due to the modification

2Since most vehicular crowdsensing applications such as parking lot
detection and traffic surveillance do not have stringent latency requirement
and the sensed data for them are generally queued in the recruited vehicles,
the time length of our framework could be at the timescale of several seconds,
in order to make full use of computation resources at the network edge and
reduce the control overhead of the application manager.

overhead and privacy issue. In other words, the cellular and

V2V transmission rates are time-varying but are not the control

variables in our framework, which is similar to that assumed

in [14], [15], [17]. Besides, the application manager in practice

will only consider the cooperation between vehicles traveling

along the same direction on the road, since they can achieve

a more stable and prolonged V2V link.

B. Application Model

We consider that each crowdsensing application requires a

crowd of vehicles to periodically sense data from immediate

surroundings, in-situ process them such as data fusion and

image/video processing (e.g., object recognition and feature

detection), and transmit the processed results within a spe-

cific deadline (i.e., the expired time of the sensed data in

each sensing and pre-processing period) to the centralized

application manager for post-processing such as spatial and

big data analyses [4]. In our framework, we adopt 1ik = 1
to represent a vehicle i is recruited to run an application k
by the application manager, and take the pre-processing of

sensed data at the vehicle side (e.g., one or several functional

modules) as a whole task for ease of heterogeneous application

management. In other words, similar to that considered in

many existing works [14], [17], [18], [22], [27], our framework

will concentrate on the task workload scheduling (i.e., sensed

data offloading) for crowdsensing applications.

We denote the processing density of the whole task of a

crowdsensing application k by γk (i.e., the average amount of

CPU cycles to process a bit of sensed data), and consider

the processed result size equals to a fraction ρk of the

input sensed data (e.g., video compression or data fusion).

Besides, we denote the average data sensing rate required by

an application k by Ψk, which is given by the application

manager in advance. Then, we assume that W k
i (t) size (in

bits) of new data is sensed by a vehicle i for an application

k in each time slot (i.e., E[W k
i (t)] = Ψk, for all the recruited

vehicles {i|1ik = 1, ∀i ∈ N} in any a time slot t), since

the sensing capacity of vehicles may be occupied by other

vehicular applications at any time.

C. VM Pool Model

Besides deploying a series of functional modules for post-

analyzing the processed results uploaded from the recruited

vehicles, mobile network providers also set up a specialized

VM pool in the edge cloud, in order to assist the task

processing for the recruited vehicles. In the context of a large

number of vehicles, we consider an application-oriented rather

than the existing device-oriented model [14], [22], [23] for

the VM pool to facilitate resource management. Specifically,

each application k is assigned to a dedicated virtual machine

with computing capacity vk (in cycles), and to capture the

dynamic and restricted physical resources P (t) of the VM

pool (e.g., competing for the resources of the edge cloud with

BBU pool and other VEC services) in a time slot, we introduce

the following resource constraint:

∑M
k=1 vkπk(t)≤P (t), (1)
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where πk(t) ∈ {0, 1} is a binary indicator decided by the

application manager. πk(t)= 1 if the VM pool resources are

allocated to the VM of the application k, and 0 otherwise.

D. Task Queueing Model

With the development of vehicular crowdsensing industry,

vehicles will support multiple crowdsensing applications si-

multaneously [3], and the specific features (e.g., processing

density) and requirements (e.g., latency) of those applications

are often distinct. As such, our framework should provide

adaptive management policy for heterogeneous applications

in vehicles. To this end, for each application k in a vehicle

i we introduce a task workload queue Qk
i (t) to describe

the residual amount of unprocessed sensed data and a task

output queue Dk
i (t) to maintain the processed results to be

uploaded, as shown in Fig. 2. In addition, we introduce

M task workload queues at the VM pool side denoted by

L1(t), L2(t), . . . , LM (t) where Lk(t) indicates the residual

amount of unprocessed sensed data of an application k of-

floaded from all the recruited vehicles (i.e., {i|1ik = 1, ∀i ∈
N}) in our framework.

Figure 2: Task queueing model in our framework.

Our framework provides three kinds of task processing

modes (i.e., local computing, V2V-based computing and VM-

based computing), and hence we respectively introduce three

kinds of control variables to indicate them. Specifically, xk
i (t)

represents how much task workload from the Qk
i (t) is locally

processed by the vehicle i, and the processed results are

pushed into the Dk
i (t) (i.e., the green arrows in Fig. 2).

ykij(t) represents how much task workload from the Qk
i (t)

is offloaded to a nearby resource-free vehicle j which after

processing will transmit the processed results back to the

Dk
i (t) (i.e., the red arrows in Fig. 2), since only the recruited

vehicles of each application should upload the processed

results3 (e.g., due to the vehicle recruitment and incentive

policies such as monetary reward). zki (t) represents how much

task workload from the Qk
i (t) is offloaded to the dedicated VM

of the application k in the VM pool which after processing will

forward the processed results to the module for post-analyses

in the edge cloud (i.e., the blue arrows in Fig. 2). Besides, we

introduce another control variable uk
i (t) indicating how many

3Note that we can easily modify our model to let the cooperative vehicles
upload the processed results rather than forwarding them back to the recruited
vehicles (i.e., substituting

∑N
j=1 λij(t)y

k
ij(t) in Dk

i (t+1) expression with
∑N

j=1 λji(t)y
k
ji(t)). In this case, we also need to introduce another incentive

constraint for network resources. We will consider them in the future work.

processed results from the Dk
i (t) are uploaded to the post-

analyses module in the edge cloud (i.e., the purple arrows in

Fig. 2). In this context, we can update the queue dynamics (in

bits) as follows:

Qk
i (t+1)=

[
Qk

i (t)−xk
i (t)−

∑N
j=1 λij(t)y

k
ij(t)−zki (t)

]+
+W k

i (t),

Dk
i (t+1)=

[
Dk

i (t)−uk
i (t)

]+
+ρkx

k
i (t) + ρk

∑N
j=1 λij(t)y

k
ij(t),

Lk(t+1) =
[
Lk(t)−πk(t)

vk
γk

]+
+
∑N

i=1 z
k
i (t),

where [x]+ � max{x, 0} and the binary control variable

λij(t) ∈ {0, 1} indicates whether vehicle i and j will establish

a V2V link. Since the unit of VM computing capacity is cycle

and that of queue backlog is bit, we use the value of computing

capacity (e.g., vk) divided by the processing density (e.g., γk)

to represent the amount of processed workload from the queue

at VM side (e.g., Lk(t)) for unit agreement.

E. Energy Consumption Model

In the local computing mode, only vehicle local computation

resources are utilized, and hence the vehicle energy consump-

tion can be expressed as follows:

El
i(t) = pi(t)

∑M
k=1 x

k
i (t)γk

si(t)
,

where pi(t) is the CPU working power according to the

stabilized CPU working frequency in a time slot [14], [41], and

the rest part is the time required for task workload processing.

In the V2V-based computing mode, both vehicle computa-

tion and V2V transmission resources are utilized, and we can

obtain the energy consumption expression as follows:

Eo
ij(t)=λij(t)

[
pj(t)

∑M
k=1 y

k
ij(t)γk

sj(t)
+pij(t)

∑M
k=1(1+ρk)y

k
ij(t)

dij(t)

]
,

where pij(t) is the V2V transmission power, and we assume

it and the V2V transmission rate are symmetric between each

pair of vehicle i and j for simplicity. In this context, the first

part is the computation energy consumption of vehicle j, and

the second part is the transmission energy consumption of

offloading some workloads to vehicle j plus forwarding the

processed results back to vehicle i.
In the VM-based computing mode or in the case of pro-

cessed result uploading, only cellular transmission resources

are utilized, and we can have the energy consumption:

En
i (t)=pni (t)

∑M
k=1

[
zki (t)+uk

i (t)
]

di(t)
,

where pni (t) as mentioned in Section III-A is the cellular

transmission power. Note that, as our main purpose is to reduce

the energy consumption of network-wide recruited vehicles for

crowdsensing applications, we neglect the energy cost in the

edge cloud which has persistent energy supply.

IV. PROBLEM FORMULATION

On the basis of the above framework model, we next de-

scribe a novel multi-vehicle and multi-task offloading problem

formulation with a series of necessary constraints.
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A. Scheduling Constraint

Considering the vehicle resource limitation, we have the

following task workload scheduling constraints:

∑M
k=1

[
xk
i (t) +

∑N
j=1 λji(t)y

k
ji(t)

]
γk ≤ si(t), (2)

∑M
k=1

[
zki (t) + uk

i (t)
] ≤ di(t), (3)

∑M
k=1 λij(t)y

k
ij(t) ≤ dij(t). (4)

Constraint (2) ensures the amount of local task workload plus

that offloaded from other vehicles are processed within vehicle

available computing capacity in each time slot, constraint (3)

ensures that the amount of offloaded task workload plus the

amount of uploaded processed results do not exceed vehicle

cellular uplink capacity, and constraint (4) ensures that the

amount of task workload offloaded to a nearby vehicle is not

more than the V2V link capacity between them.

In addition, since the task workload of an application

required to process in a time slot cannot exceed the backlog of

the corresponding task workload queue, we have the following

scheduling constraints:

xk
i (t) +

∑N
j=1 λij(t)y

k
ij(t) + zki (t) ≤ Qk

i (t), (5)

uk
i (t) ≤ Dk

i (t). (6)

Next, taking vehicle mobility into account, we introduce

a time-varying V2V connectivity graph G(t) = {N , E(t)}.

Specifically, the set of vehicles N is the vertex set and

E(t) = {(i, j) : eij(t) = 1, ∀i, j ∈ N} is the edge set in

a time slot, where eij(t) = 1 if the vehicle i can establish a

feasible V2V link with another vehicle j. Note that, we specify

that eii(t) ≡ 0 for each vehicle i in each time slot. Besides,

each vehicle cannot establish and maintain more than one V2V

link in a time slot, due to the resource and time constraints as

mentioned in Section III-A. To summarize, we also have the

following scheduling constraints:

λij(t)=0, if eij(t) �∈ E(t), (7)

∑N
j=1 λij(t) +

∑N
u=1 λui(t) ≤ 1. (8)

B. Latency Constraint

Although many existing works [14], [17], [18], [22] as-

sume mobile applications are delay-tolerant, we consider that

many vehicular crowdsensing applications in practice are

deadline-sensitive (e.g., traffic flow prediction and environ-

mental monitoring). In other words, the incoming sensed data

of a crowdsensing application k should be processed, and its

processed results should be uploaded before an application-

specific deadline Tk. To jointly capture the deadline-sensitive,

large-scale (i.e., multiple recruited vehicles) and long-term

characteristics of crowdsensing applications, we define the

following application latency constraints:

lim
T→∞

1

T

T−1∑
t=0

[ N∑
i=1

[
Qk

i (t+1)+
Dk

i (t+1)

ρk

]
+Lk(t+1)

]

∑N
i=1 1ikΨk

≤ Tk,

(9)

All queues Qk
i (t), D

k
i (t) and Lk(t) are stable. (10)

Constraint (10) ensures our framework is a stable queueing

system. Only when the constraint (10) is satisfied, the left-

hand side of the constraint (9), in which the numerator is

the long-term average amount of residual task workloads4

of an application k in the system and the denominator is

the average workload arrival rate of that application in the

system, indicates the average application latency in terms of

the Little’s law principle [45]. Note that as we take the task

processing in vehicles and the edge cloud as a serial queueing

system, the workload processing and transmission delay in it

will be incorporated in the average waiting time. In addition,

the exact application latency in a queueing system is the

average waiting time plus the average service time (e.g., the

transmission time of vehicles uploading processed results).

Since our framework operates in a time-slotted manner, the

fixed and limited slot length can be roughly viewed as the

service time. Therefore, we neglect the service time here for

simplicity. To facilitate next description, we introduce two

auxiliary parameters Ck =
∑N

i=1 1ikΨkTk and Uk(t + 1) =∑N
i=1(Q

k
i (t+1)+Dk

i (t+1)/ρk
)
+Lk(t+1), which enables

us to rewrite the constraint (9) as follows:

lim
T→∞

1

T

∑T−1
t=0 Uk(t+1) ≤ Ck.

According to the task queueing model as mentioned in Section

III-D, we can easily obtain the following expression:

Uk(t+1) = Uk(t)−
N∑
i=1

uk
i (t)

ρk
−πk(t)min{vk

γk
, Lk(t)}+

N∑
i=1

W k
i (t).

An intuitive interpretation of the above expression is that the

first two subtracted items can be viewed as the workload

departure of the queueing system, and the last added item can

be viewed as the workload arrival of the queueing system.

Note that, we substitute “min{uk
i (t), D

k
i (t)}” with “uk

i (t)” in

the above expression in terms of the constraint (6).

C. Incentive Constraint

To expand vehicle cooperation in our framework, mobile

network providers should design a proper incentive scheme to

prevent vehicle free-riding and overloading in the long run.

For vehicle free-riding issue, similar to the prevalent scheme

in P2P systems, we introduce a tit-for-tat constraint for com-

putation resources which ensures that a vehicle exploits com-

putation resources from other vehicles only if it contributes

sufficient resources to the others. To proceed, we denote by

Xi(t) to represent the resource amount that other vehicles

contribute to the vehicle i, and Yi(t) to represent the resource

amount the vehicle i contributes to the others in a time slot.

According to the task workload scheduling, we can obtain:

Xi(t) =
∑N

j=1 λij(t)
∑M

k=1 y
k
ij(t)γk,

Yi(t) =
∑N

j=1 λji(t)
∑M

k=1 y
k
ji(t)γk.

4Since the physical meaning of the workloads in Dk
i (t) (i.e., the processed

results) is different from that in Qk
i (k), Lk(t) and Ψk (i.e., the sensed data),

we exploit Dk
i (t) divided by ρk for unit agreement. In addition, we exploit

Qk
i (t+1), Dk

i (t+1) and Lk(t+1) to indicate the residual task workloads
in the constraint (9), since we take t = 0 as the starting point.
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Let Xi and Yi stand for the time averages of Xi(t) and Yi(t).
We then define the resource balance constraint as follows:

αiXi ≤ Yi, (11)

where αi is within [0,1] for each vehicle i ∈ N .

For vehicle overloading issue, we introduce an energy

budget constraint which ensures that each vehicle will not

sacrifice excessive energy (i.e., computation and transmission

energy) to benefit others. Specifically, we define Ko
j as the

average energy budget of each vehicle j for helping other

vehicles and Kj(t) as the real energy consumption contributed

to the others in a time slot including workload computation

cost and processed result transmission cost, i.e.,

Kj(t)=
∑N

i=1 λij(t)
[
pj(t)

∑M
k=1 y

k
ij(t)γk

sj(t)
+pij(t)

∑M
k=1 ρky

k
ij(t)

dij(t)

]
.

Then, we define the energy budget constraint as follows:

Kj = lim
T→∞

1

T

∑T−1
t=0 Kj(t) ≤ Ko

j . (12)

In practice, the value of α and Ko are decided by mobile

network providers. We should emphasize that, the vehicle in-

centive information (i.e., Xi(t), Yi(t) and Ki(t)) is maintained

by the application manager in our framework, and the above

incentive schemes are feasible but not the only choice. In

practice, mobile network providers can also design social-

based, effort-based or monetary-based incentive schemes.

D. Problem Formulation

In our framework, the objective is to design a joint control

algorithm for workload assignment and VM pool resource

allocation (i.e., xk
i (t), λij(t), ykij(t), zki (t), uk

i (t), πk(t),
∀i, j ∈ N and ∀k ∈ M) in the application manager, so as to

minimize the energy consumption of network-wide vehicles

for task processing of heterogeneous crowdsensing applica-

tions, and meanwhile reconciling both application latency and

vehicle incentive in a long-term perspective. To this end, we

formulate the following optimization problem:

minimize lim
T→∞

1

T

T−1∑
t=0

N∑
i=1

E

[
El

i(t)+
N∑

j=1

Eo
ij(t)+En

i (t)
]

(13)

subject to (1) – (12).

Here, we take the expectation form in the objective function

due to the random variable W k
i (t) as mentioned in Section III-

B. In practice, the vehicle information in terms of available

resources and task queues can be piggybacked on the cellular

control messages (e.g., uplink training) or the control messages

shared with other VEC services to the edge cloud for making

task scheduling decision, which will not lead to much energy

consumption for vehicles. More specific analyses have been

given in our previous works [15], [19]. Therefore, we do not

incorporate it into the problem formulation for simplicity.

V. TASKSCHE ALGORITHM DESIGN

The main challenge of solving the problem in (13) lies

in the time-average objective and constraints which require

the unpredictable future system information such as available

vehicle resources and V2V connectivity, due to dynamic

local application usages in vehicles and vehicle mobility. In

this paper, we design TaskSche, an online task scheduling

algorithm which only utilizes the current system information

per time slot for the problem in (13), by invoking the Lyapunov

drift-plus-penalty framework [46].

A. Problem Transformation

The basic idea of this framework has two-fold. First is to

use the stability of virtual queues to ensure that the time

average constraints are satisfied. Second is to transform the

original problem with the drift-plus-penalty expression so as

to stabilize the virtual queues while optimizing the objective.

In this following, we will discuss how to adopt this framework

for our problem in detail. In order to capture the time-average

application latency as well as vehicle incentive constraints, we

introduce the following virtual queues:

Ak(t+1)= Ak(t)−Ck+Uk(t+1),

Hi(t+1)= Hi(t)−Yi(t)+αiXi(t),

Zi(t+1)=Zi(t)−Ko
i +Ki(t),

where Uk(t+1), αiXi(t) and Ki(t) can be viewed as arrival

rates, while Ck, Yi(t) and Ko
i can be viewed as departure

rates. We assume the initial backlogs of these virtual queues

are all 0. According to the queueing theory, if these virtual

queues are stable (i.e., the average arrival rate is no more

than the average departure rate), then the constraints (9), (11)

and (12) can be satisfied. With this principle in mind, we

adopt the Lyapunov drift-plus-penalty framework to jointly

consider the objective optimization and the stability of both

the virtual queues (i.e., the constraints (9), (11), (12)) and

the real queues (i.e., the constraint (10)). Specifically, we first

define a quadratic Lyapunov function:

R(Θ(t)) =
1

2

{
R1(Θ(t))+R2(Θ(t))

}
,

R1(Θ(t)) =
∑N

i=1

∑M
k=1 ω

2
k

[
Qk

i (t)
2+Dk

i (t)
2
]
+

∑M
k=1 ω

2
kLk(t)

2,

R2(Θ(t)) =
∑M

k=1 ω
2
kA

′
k(t)

2+
∑N

i=1

[
H ′

i(t)
2+Z′

i(t)
2
]
.

Here, A′
k(t) equals to Ak(t) if Ak(t) > 0, and 0 otherwise. In

other words, A′
k(t) ≥ Ak(t) in each time slot. So do H ′

i(t) and

Z ′
i(t). Θ(t) is the vector of all real and virtual queue backlogs

in our framework. We introduce R1, which is widely used

to guarantee queue stability in the Lyapunov function [14],

[15], [17], [18], [46], for the constraint (10), and introduce

R2 for the application latency constraint (9) and the incentive

constraints (11), (12). We should emphasize that, we do not

need to take those virtual queues with negative backlogs into

account, since they do not violate the time-average constraints

at that time. In addition, we introduce a set of weights

ωk, ∀k ∈ M to reveal the “importance” of applications, which

is decided by the application manager in advance. Intuitively, a

larger weight implies that the application manager has a higher

preference on prioritizing the sensed data processing of that
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application. We will discuss the impact of different weights

on application performance in Section VII.

Note that, since the unit of queue Q,D,L,A is bit, the unit

of queue H is cycle and the unit of queue Z is joule, we

should respectively normalize their backlogs with the max-

imum sensed data amount, the maximum shared computing

capacity and the maximum shared energy consumption among

all vehicles for unit agreement in the above Lyapunov function.

These maximum values can be specified or learned by the

application manager in practice. Then, we define the following

one-slot Lyapunov drift-plus-penalty expression:

Δ(Θ(t)) + V
∑N

i=1 E

[
El

i(t)+
∑N

j=1 E
o
ij(t)+En

i (t)
]
,

Δ(Θ(t))�E
[
R(Θ(t+1))−R(Θ(t)) | Θ(t)

]
,

where V is a tradeoff parameter between objective optimality

and queue stability, and its value is set by the application

manager in advance (e.g., according to some small-scale

experiments). We will study the relationship between the V ’s

value and the framework performance by simulation in Section

VII. In terms of the Lyapunov drift-plus-penalty expression,

the problem in (13) can be transformed as follows (note that,

the time-average constraints (9) – (12) have been captured in

the Δ(Θ(t))):

minimize Δ(Θ(t)) + V
N∑
i=1

E

[
El

i(t)+
N∑
j=1

Eo
ij(t)+En

i (t)
]

subject to (1), (2), (3), (4), (5), (6), (7) and (8).

Since the new objective function includes quadratic terms

which are difficult to tackle, we instead minimize an upper

bound of the objective function which is given in Lemma 1.

Lemma 1: Under any possible value of Θ(t) and any

feasible scheduling policy, the drift-plus-penalty expression

satisfies:

Δ(Θ(t))+V
∑N

i=1 E

[
El

i(t)+
∑N

j=1 E
o
ij(t)+En

i (t)
∣∣Θ(t)

]

≤ E

[
F ∗+f(t)+

N∑
i=1

M∑
k=1

cki (t)x
k
i (t)+

N∑
i=1

N∑
j=1

M∑
k=1

ckij(t)λij(t)y
k
ij(t)

+
N∑
i=1

M∑
k=1

ak
i (t)z

k
i (t) +

N∑
i=1

M∑
k=1

bki (t)u
k
i (t) +

M∑
k=1

ek(t)πk(t)
∣∣∣Θ(t)

]
,

where the factors are expressed as follows:

cki (t) = ω2
k

[
Dk

i (t)ρk −Qk
i (t)

]
+ V pi(t)

γk
si(t)

,

ckij(t) = ω2
k

[
Dk

i (t)ρk −Qk
i (t)

]
+ V

[pj(t)γk
sj(t)

+
pij(t)(1 + ρk)

dij(t)

]

+
[
αiH

′
i(t)γk−H ′

j(t)γk
]
+Z′

j(t)
[pj(t)γk

sj(t)
+
pij(t)ρk
dij(t)

]
,

ak
i (t) = ω2

k

[
−Qk

i (t) + Lk(t)
]
+ V pni (t)

1

di(t)
,

bki (t) = ω2
k

[
−Dk

i (t)− A′
k(t) + Uk(t)

ρk

]
+ V pni (t)

1

di(t)
,

ek(t) = ω2
k

[
− Lk(t)−A′

k(t)− Uk(t)
]
min{Lk(t),

vk
γk

}.

The factor F ∗ is a constant value across all time slots and

f(t) involves no scheduling indicators. Therefore, we do not

consider them in the task scheduling algorithm design. Due

to the page limit, we leave their specific expressions and the

detailed proof of Lemma 1 to the online technical report [47].

B. TaskSche Algorithm
According to the transformed problem and Lemma 1, we

propose TaskSche, an online task scheduling algorithm to

minimize the drift-plus-penalty upper bound (i.e., the last five

terms on the right-hand-side), subject to the constraints (1) –

(8), which can be proved to achieve a good performance for the

problem in (13). We formally state this algorithm as follows:

• Step 1. Find the optimal workload assignment for the task

queue of each crowdsensing application in each vehicle:

min
{x,λ,y,z,u}

N∑
i=1

N∑
j=1

M∑
k=1

ckij(t)λij(t)y
k
ij(t)

+
N∑
i=1

M∑
k=1

[
cki (t)x

k
i (t)+aki (t)z

k
i (t)+bki (t)u

k
i (t)

]

subject to (2), (3), (4), (5), (6), (7) and (8).

• Step 2. Find the optimal VM pool resource allocation:

min
{π}

M∑
k=1

ek(t)πk(t) subject to (1).

• Step 3. Update the real and virtual queues in the frame-

work based on the results in Step 1 and Step 2.

We should emphasize that, although the Lyapunov drift-plus-

penalty framework is a general optimization tool, the design of

Lyapunov function and the upper bound of drift-plus-penalty

expression are problem-specific, which also leads to significant

differences in the corresponding algorithm design. We next

elaborate on the implementation for the TaskSche algorithm,

which is the core building block of our framework.

VI. ALGORITHM IMPLEMENTATION

In this section, we respectively provide the algorithm imple-

mentation for Step 1 and Step 2, then analyze the performance

and complexity of the TaskSche algorithm, and discuss frame-

work practicality and some extensions in the end.

A. Algorithm Implementation for Step 1
The problem in Step 1 has both linear constraints (2) –

(6) and integer constraints (7), (8), and its objective function

includes “quadratic” term (i.e., the linear variable ykij(t) ×
the integer variable λij(t)), which is non-trivial to be solved

directly. To this end, we will decouple the integer and linear

variables in the workload assignment policy design. It is ready

to observe that under any workload assignment policy, each

recruited vehicle has either no V2V links (i.e., single vehicle
case) or exactly one V2V link with a nearby vehicle (i.e.,

coupled vehicle case), in terms of the integer constraints.

Therefore, our basic idea is to first study the optimal workload

assignment in these two cases for each recruited vehicle with

only the linear constraints, and then consider the network-
wide vehicle case with the integer constraints.

Specifically, we first study the task workload assignment

in the single vehicle case or called self-assignment case (i.e.,

λij(t) = 0, ∀i, j ∈ N ). In this context, we require to solve the

following problem:

min
{x,z,u}

M∑
k=1

[
cki (t)x

k
i (t)+aki (t)z

k
i (t)+bki (t)u

k
i (t)

]

subject to (2), (3), (5), (6).



2327-4662 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2018.2872436, IEEE
Internet of Things Journal

9

This is a linear programming problem with 3×M variables

and 4×M constraints, which can be optimally and efficiently

solved by many mature algorithms (e.g., simplex method).

We next consider the coupled vehicle case or called V2V-

assignment case. Using the notation m to indicate task work-

load offloader and n to indicate task workload offloadee re-

spectively, then we require to solve the following subproblem

twice for each pair of vehicles i, j with an available V2V link

(i.e., i=m, j=n and i=n, j=m):

min
{x,y,z,u}

M∑
k=1

[
ckm(t)xk

m(t)+ckmn(t)y
k
mn(t)+akm(t)zkm(t)

+bkm(t)uk
m(t)+ckn(t)x

k
n(t)+akn(t)z

k
n(t)+bkn(t)u

k
n(t)

]

subject to (2), (3), (4), (5), (6).

Note that, this is also a linear programming problem with 7×M
variables and 5×M constraints, which can be optimally solved

by the similar algorithms for the above single vehicle case.

Figure 3: A graph model for the task workload assignment.

At last, we consider the network-wide vehicle case (i.e.,

the problem in Step 1) such that each recruited vehicle

will conduct either self-assignment or V2V-assignment. We

propose a graph transformation model, as shown in Fig. 3. On

the left-hand-side of the figure, a self-loop indicates the self-

assignment of the vehicle and its weight is the optimal result

of the problem in the single vehicle case; a directed edge

between two nodes indicates two vehicles have a V2V link

for cooperation (i.e., the constraint (7)), the starting point of

the edge is the task workload offloader and the edge weight

is the optimal result of the problem in the coupled vehicle

case. Since each vehicle can choose either self-assignment

or V2V-assignment, we can transform the problem in Step

1 into a matching problem over the transformed graph on

the right-hand-side of the figure. Specifically, we remove the

self-loops in the graph on the left-hand-side, duplicate each

node i (the duplicated node is denoted as i′), and add an

edge between each node and its duplicated node in the new

graph. Then we substitute the directed edges between each

pair of nodes with an undirected edge, and define the weight

of the new edge as the smaller weight of those two directed

edges. By doing so, we can obtain a new graph as shown

on the right-hand-side of Fig. 3. According to the constraint

(8), we require to find a matching over the new graph, such

that a node can either match up with its duplicated node (i.e.,

choosing self-assignment) or another node (i.e., choosing the

V2V-assignment). In order to solve this problem, we can apply

the Edmonds’s Blossom algorithm to obtain the minimum

weighted graph matching solution, which is also the optimal

solution for the problem in Step 1.

B. Algorithm Implementation for Step 2

In terms of solving the problem in Step 2, we can easily

observe that the value of factor ek(t) is non-positive across all

time slots. Since minimizing the objective with non-positive

factors is equivalent to maximizing the objective with non-

negative factors, we can treat the problem in Step 2 as a

standard 0 – 1 knapsack problem, which can be optimally

or approximately solved by many mature algorithms (e.g.,

dynamic programming and greedy methods).

After the application manager in the edge cloud imple-

mented the aforementioned algorithms to obtain the workload

assignment and resource allocation results in Step 1 and

Step 2, it will notify these results to each recruited vehicle

and the VM pool to conduct task workload processing, and

they subsequently update their real queues. Note that, the

data size of the notified results is limited (i.e., x, y, u, z),

and therefore it will not introduce much overhead to the

edge cloud. Besides, the application manager will supervise

the V2V-based computing, and if the V2V cooperation is

successful, it will update its maintained virtual queues.

C. Performance and Complexity Analysis

The following theorem proclaims the minimum expected

time-average energy consumption of network-wide vehicles

running crowdsensing applications, and the backlog bound

of the time-average real and virtual queues achieved by the

TaskSche algorithm.

Theorem 1: For each recruited vehicle i, suppose its average

workload arrival rate of each crowdsensing application k
denoted by W k

i is strictly within the system capacity region5

Ω (i.e., Wi + εki ∈ Ω). Here, εki is a small positive value,

and without loss of generality, we denote ε = min εki , ∀i ∈
N , ∀k ∈ M. In this context, we can derive

lim
T→∞

1

T

∑T−1
t=0 E

[
J(t)

] ≤ ∑N
i=1

∑M
k=1 E

∗(W k
i + εki )+

F ∗

V
,

lim
T→∞

1

T

∑T−1
t=0 E

[∑N
i=1

∑M
k=1 ω

2
k

(
Qk

i (t)+Dk
i (t)

)

+
∑M

k=1 ω
2
k

(
Lk(t)+Ak(t)+Uk(t)

)
+
∑N

i=1

(
Hi(t)+Zi(t)

)]

≤ lim
T→∞

1

T

∑T−1
t=0 E

[∑N
i=1

∑M
k=1 ω

2
k

(
Qk

i (t)+Dk
i (t)

)

+
∑M

k=1 ω
2
k

(
Lk(t)+A′

k(t)+Uk(t)
)
+
∑N

i=1

(
H ′

i(t)+Z′
i(t)

)]

≤ 1

ε

(
F ∗+V

∑N
i=1

∑M
k=1 E

∗(W k
i + εki )

)
.

Here, J(t) is the energy cost of network-wide vehicles

running crowdsensing applications in terms of the TaskSche
algorithm, and E∗(W k

i + εki ) is the offline minimum energy

cost of a vehicle i for executing average W k
i + εki amount

of task workload of an application k. The detailed proof is

provided in our online technical report [47]. Theorem 1 shows

that the TaskSche algorithm can achieve the offline optimum

approximately as V increases. In addition, it shows that all the

5This is a reasonable assumption, since the average workload arrival rate

of an application k served by each vehicle i (i.e., W k
i ) should be close to the

required data sensing rate of that application (i.e., Ψk) which is an empirical
value given by the application manager in advance and therefore it should be
within the system capacity region.
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real and virtual queues in the framework are rate mean stable,

which indicates our framework is a stable queueing system

and the time-average constraints (i.e., the application latency

and vehicle incentive) can be guaranteed (i.e., the time-average

arrival rate is no more than the time-average service rate when

the queue is stable).
Note that the TaskSche algorithm includes a task workload

assignment policy, a VM pool resource allocation policy plus a

queue updating policy. Then, the complexity of the first policy

is made up of solving the linear programming problem in the

single vehicle case for all recruited vehicles (i.e., N×O(M2)),
solving the linear programming problem in the coupled vehicle

case for all pairs of vehicles with an available V2V link (i.e.,

N2×O(M2)), and running the Edmonds’s Blossom algorithm

for the optimal graph matching (i.e, O(N3)). In general, since

the amount of crowdsensing applications is far less than that of

recruited vehicles and the coupled vehicle case can be finished

in parallel, we consider that the complexity of the first policy is

dominated by O(N3). The complexity of the second policy is

a pseudo polynomial time O(M×P (t)) in each time slot if the

classic dynamic programming policy is adopted, and that of

the last policy is intuitively O(N). To sum up, we can have the

complexity of the TaskSche algorithm is O(N3)+O(M×P (t))
in each time slot.

In practice, we consider that the application manager can

adopt many techniques to accelerate the algorithm execution.

First, it can only consider the control variables with negative

values per time slot, in terms of the problem form in Step

1. In addition, it can utilize cluster partition for vehicles,

and executes the optimal graph matching for each cluster in

parallel. Moreover, it can adopt some approximate implemen-

tations (e.g., greedy methods with 0.5 approximation ratio)

for both graph matching and knapsack problem to reduce the

complexity. At last, it can also deploy many powerful CPUs

or GPUs to facilitate the algorithm execution.

D. Framework Practicality and Extensions
As for the framework practicality, we consider that our

framework can be viewed as a functional component of the

emerging edge cloud radio access network, which is proposed

as a novel and promising architecture for future cellular net-

works by combining RAN with cloud computing to tackle the

ever-increasing cellular traffic (e.g., mobile multimedia traffic).

In addition, we assume that our framework has lower priority

compared with those RAN-based functional components such

as RRH sleeping scheduling and BBU resource allocation, and

will operate adaptively in terms of their decisions. Besides,

our framework is established on the basis of the cooperation

of mobile network operators, vehicles, enterprises and gov-

ernments, and makes full use of their resources (e.g., vehicle

sensing and processing, edge cloud processing and controlling)

at the network edge. At last, our framework enables the

application manager deployed in the edge cloud to watch and

control all participants serving crowdsensing applications (e.g.,

information collection and scheduling decision notification).

Although the algorithm introduces some transmission and con-

trol overhead to the edge cloud, it achieves security, robustness

and efficiency.

We next discuss some extensions of our framework.

(1) Cellular transmission rate controlling: Our framework

can easily incorporate the control of vehicle cellular trans-

mission rate (i.e., di(t)). Specifically, we consider a selection

of cellular transmission rates corresponding to Modulation and

Coding Scheme levels. For a certain target bit error rate (BER),

different transmission rates require different SNRs, which are

determined by transmission power and wireless channel gain.

Since wireless channel gain is time-varying, we introduce

a set of feasible transmission modes (i.e., Mi(t)) for each

vehicle (i.e., each mode is a combination of transmission rate

and power for a certain BER target and a given wireless

channel gain) in each time slot. In this context, the application

manager requires to choose an adaptive transmission mode

index m ∈ Mi(t) for each recruited vehicle i to facilitate

task offloading. As such, the linear programming problem

in the single (coupled) vehicle case becomes a mix-integer

programming problem due to the constraint (3). Although this

problem is NP-hard in general, it might be still efficiently

solved by some optimization tools (e.g., GLPK optimizer),

due to the limited number of variables and constraints.

(2) Batch processing model: Although our framework cur-

rently considers the streaming processing model, in which we

exploit one bit as the unit size as mentioned in Section III, it

can also support batch processing model by substituting the

unit “bit” with the unit “task block” and introducing the task

block size sk of each application k. In this context, W k
i (t)

indicates how many task blocks are generated by vehicle

i for application k, and �di(t)
sk

	 indicates how many task

blocks of application k can be offloaded from vehicle i in

a time slot. Besides, the linear programming problem in the

single (coupled) vehicle case becomes an integer programming

problem, since the control variables x, y, u, z are required to

be integers. Note that we can also leverage some optimization

tools (e.g., GLPK optimizer) to solve it.

(3) Fine-grained VM queueing model: Our framework cur-

rently assumes that the application VM has one task workload

queue to maintain the residual amount of unprocessed sensed

data offloaded from all the recruited vehicles. Nevertheless,

different recruited vehicles in practice may be given different

priorities to leverage the VM resources (e.g., due to some

reputation or incentive schemes), and may be required to

sense data with different rates or upload the processed results

with different deadlines (e.g., due to different geographical

locations). These individualized features cannot be captured

by the current VM queueing model. To this end, we can

consider a more fine-grained VM queueing model, where each

application VM creates a task workload queue and a profile

with individualized features for each recruited vehicle. In this

context, the optimal VM pool resource allocation will include

two stages in each time slot. The first stage is to allocate the

resources of each application VM (i.e., the computing capacity

vk) to the recruited vehicles, in terms of their queue backlogs

and individualized features, which can be modeled as a linear

programming problem. The second stage is to allocate the VM

pool resources to the application VM, in terms of the optimal

VM resource allocation results in the first stage, which is a 0 –

1 knapsack problem. Note that, each application VM can solve
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the linear programming problem in the first stage individually,

without leading to much time consumption.

(4) Comparison with multiple simultaneous V2V link estab-
lishment: Our framework currently considers that each vehicle

will only establish and maintain one stable V2V link, due to

the communication resource and time constraints in a time slot

(i.e., single V2V link establishment at a time). If we release

this assumption and allow each vehicle i to establish at most

λ∗
i V2V links in a time slot, then the constraint (8) will become∑N
j=1 λij(t) +

∑N
u=1 λui(t) ≤ λ∗

i . It is not hard to see that

this new constraint invalidates our task workload scheduling

policy in Section VI-A, and we have to solve the problem in

Step 1 (i.e., a mixed-integer quadratic programming problem

with O(N×M) variables and constraints) directly. Although

some optimization tools (e.g., CPLEX optimizer) can solve

this NP-hard problem to obtain the optimal solution, they will

consume substantial amounts of time (e.g., tens or hundreds of

seconds), which is inapplicable for our framework in practice.

Alternatively, we can search for some fast heuristic methods

to solve the problem, while they will impact the performance

analysis of TaskSche algorithm (i.e., Theorem 1 does not

hold anymore), and degrades the long-term framework per-

formance. In order to draw a conclusion, we compare the

framework performance in the current resource-constrained

setting with that in the resource-infinite setting (i.e., the ideal

case) where each vehicle can establish an arbitrary number

of V2V links in a time slot (i.e., the control variable λij(t)
and the constraint (8) can be removed and the problem in

Step 1 becomes a linear programming problem) by simulation.

Numerical results in Fig. 7 show that the performance gap

between them is roughly 5% – 10% in most cases, which

indicates that the single V2V link establishment is sufficient

for task workload processing in our framework from the

perspective of both performance and control complexity.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the Chimera
framework through extensive trace-driven simulations.

A. Real Measurements

To facilitate our simulations, we conduct real measurements

on Android smartphones to capture the dynamic vehicle com-

puting capacity and the processing density of typical data

processing modules, and perform a simple statistic in terms

of the Google cluster data trace to capture the dynamic VM

pool resources. Specifically, to simulate the available vehicle

computing capacity, we first pin the CPU frequency of all

tested smartphones to 2 GHz, and then adopt the “Another

Monitor” application [48] to record the realtime CPU utiliza-

tion ratio every time window (i.e., 1 minute in our setting).

In this context, we can calculate the available computing

capacity as the fixed CPU frequency × time window size

× (1−utilization ratio). With a one-week measurement on 8

smartphones of different owners (i.e., diverse behaviors on

application executions), we depict the samples as a PDF graph

in Fig. 4(a).
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(a) CPU utilization ratio distribution
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(b) Load Dynamics of data cluster

Figure 4: Real measurements for trace-driven simulations.

Functional Modules Processing Density
Image compression (Android Bitmap) 250∼453

Audio transcoder (Android MediaCodec) 330∼860
Activity recognition (Gyro and Accelerometer) 1258∼1947

Objective recognition (Neural networks) 2250∼2374
Face recognition (OpenCV) 2339∼2566

Parking lot detection (CNN+SVM) 5000∼12800
Video transcoder (Android FFmpeg) 21500∼24483

Table I: Processing density of typical data processing modules

In addition, we create several Android applications in-

cluding typical data processing modules and measure their

processing densities. In detail, we pin the CPU frequency of

smartphones to 2 GHz, process a given amount of data (e.g.,

images), and record the processing time. As a result, we can

roughly get the processing density of each functional module

by dividing the utilized CPU cycles (i.e., the CPU frequency

× the sum of CPU utilization ratio during the processing time)

with the input data size. Note that, the processing density of

each functional module is measured with different input data

sizes, and the value range is given in Table I.

To capture the dynamic VM pool resources, we perform a

simple statistic in terms of the Google cluster data trace [49],

which records the number of CPU cores (in fractional units)

used by each task every five minutes over a 7 hour period.

We simply sum up the total number of cores used by all tasks

in each five-minute period as the samples (i.e., indicating the

cluster load), and take all the samples in the middle 5 hours to

model the load dynamics as depicted in Fig. 4(b), where each

point is normalized by the maximum value in the samples.

B. Simulation Setup

We exploit the Opportunistic Network Environment (ONE)

simulator [50] to create the simulation scenario. Specifically,

we consider the built-in Helsinki road map, in which 500

vehicles move on the road in terms of the built-in working

day movement model which has been shown to well capture

the exponential distribution property of vehicle encounter

frequency in many real-world mobility traces. Then, we create

a “god” node to obtain the information from all vehicles as the

application manager (i.e., running the TaskSche algorithm).

For the vehicle resources in each time slot (i.e., one minute

in the simulation), we consider that all the vehicles have one

CPU core with the fixed 2 GHz working CPU frequency,

and their current loads are generated from the measured

distribution of CPU utilization ratio in Fig. 4(a). In addition,
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(a) Energy saving ratio
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(b) Time-average application latency
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(c) Resource balance queue (H)
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(d) Energy budget queue (Z)

Figure 5: The impact of different values of parameter V on the Chimera framework performance.

we adopt the similar settings from our previous work [15] to

generate vehicle cellular uplink capacity (i.e., randomly choose

from 1 M to 5 M) and V2V link capacity (i.e., a function of

V2V distance based on the Shannon equation). Besides, we

respectively set the CPU, cellular and V2V power to 1.6, 0.6

and 0.2 mW, according to various power-profiler.xml files in

Android smartphones and related works [17], [18], [22]. For

the VM pool resources, we leverage c4.large plan (with 3.0

GHz and 4 vCPUs) in Amazon EC2 as the computing capacity

of each application VM, and set the total physical resources to

20 vCPUs with the load dynamics in Fig. 4(b). In this setting,

if the current load is lower than 80%, the available vCPUs are

more than 20×(1−80%) = 4 (i.e., at least one application VM

can be activated). For the vehicle incentive, we set α = 0.5
and Ko = 0 mJ across all vehicles.

To begin with, we randomly choose 100 vehicles to run

three applications (i.e., Audio transcoder, Face recognition

and Parking lot detection) with different processing density

level (i.e., 400, 2500 and 10000). For each application, the

deadline T = 10 time slots, the arrival data size is randomly

generated with the average size Ψ = 105 bits, and the task

output ratio ρ = 0.2. In addition, all the selected vehicles

will generate new data for each application in the first 50

time slots and the simulation expires when all the generated

data is processed and uploaded entirely. Besides, we set the

application weight ω = 1 for each application. As for the

performance metric, we introduce the Energy Saving Ratio,

which equals to
ELoc−EAlg

ELoc
. Here, ELoc is the energy cost

achieved by vehicle local processing, where we assume each

vehicle schedules each application to utilize vehicle resources

proportionally (i.e.,
Qk

i (t)γk∑
k Qk

i (t)γk
si(t) for computation resources

and
Dk

i (t)∑
k Dk

i (t)
di(t) for network resources). EAlg is the energy

cost achieved by a comparable task scheduling algorithm (e.g.,

our TaskSche algorithm).

C. Simulation Results

Impact of different V on framework performance: We

first discuss the framework performance in terms of different

values of the tradeoff parameter V . In the simulation, we

take V ’s value from 103 to 107 into account, in terms of the

normalized backlog of queue Q,D,L,A and the expression

of factor c, b, a as mentioned in Section V-A. For example,

since the order of magnitude of vehicle available processing

capacity is 109 and that of application processing density

is 102− 104, we should give V a large value to make the

energy consumption (i.e., objective) and the queue backlog

(i.e., constraints) be in the similar order of magnitude. Note

that, our V settings guarantee the generated input data of all

the three applications can be processed and uploaded entirely.

The simulation results are given in Fig. 5. Specifically, Fig.

5(a) shows that the energy saving ratio of each legend6 experi-

ences a fast in the beginning and a slightly increase in the end

with V increasing, which is consistent with Theorem 1. When

V is over 105, the Chimera framework can save more than

40% energy, which indicates its good performance. Fig. 5(b)

only presents the time-average latency of the application with

the highest processing density in each time slot (calculated

by the left-hand-side of the constraint (9)), since that of the

other two applications are no more than 3 slots in all V
cases. We can see that, the bound of application latency is

less than the required deadline (i.e., the red dash line) in all V
cases, which indicates that the application latency constraint

(9) is satisfied, and the latency bound is linear proportion to

V approximately, which is also consistent with Theorem 1.

Besides, our framework achieves 1.5x – 3.6x speedup at the

peak value compared with vehicle local processing.

Fig. 5(c) depicts the sum of resource balance queue back-

log in terms of those 100 vehicles which are chose to run

applications, since the rest 400 vehicles in the simulation are

resource contributors, and they intuitively do not violate the

resource balance constraint (11). We can see that, the slope as

well as the peak of total backlog increases with V increasing.

The reason is that a large V will result in a large backlog

of task workload queue Q in terms of the Lyapunov drift-

plus-penalty expression, and consequently will highlight the

effectiveness of V2V cooperation. Note that, although the

Chimera framework enables the 100 chose vehicles to “free

ride” some resources from the other vehicles in the short term

(i.e., generating data 50 slots + application deadline 10 slots

= 60 time slots), it will enforce them to complement such a

resource gap in the long term.

Fig. 5(d) depicts the sum of energy budget queue backlog

in terms of all vehicles in the simulation. We can see that,

the slope of the total backlog shares a similar trend with that

6The legend “500−4−1” indicates the baseline setting as mentioned in the
simulation setup (i.e., 500 vehicles, 4 vCPUs for each application VM, and
1 CPU core for each vehicle).
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in Fig. 5(c), and is smaller than that of the linear function

f(t) = 0.2t (i.e., the red dash line). This observation suggests

that if we set Ko = 0.2 mJ across all vehicles, the energy

budget constraint (12) can be satisfied. For example, when

t = 20 the total energy budget is 0.2 mJ × 20 slots × 500

vehicles = 2000 mJ, which is greater than the total backlog

in all V cases. Note that, it also indicates that the vehicles

joining in the Chimera framework will not sacrifice a large

amount of energy to benefit others.

Impact of different system settings on framework perfor-
mance: We next discuss the framework performance in terms

of different cooperative vehicle amount, VM resource amount

and vehicle processing capacity. The simulation results are

depicted in Fig. 5(a), where the legend “300−4−1” indicates

there are 300 vehicles (also 100 chose vehicles) in the simula-

tion, “500−8−1” indicates the computation capacity of each

application VM is 8 vCPUs and the total physical resources

is 40 vCPUs, and “500−4−4” indicates all the vehicles have

4 CPU cores. As we can see that, the framework performance

is directly proportional to the cooperative vehicle amount

and cloudlet resource amount. This phenomenon indicates

that both V2V-based computing and VM-based computing

play a critical role in our framework. That is, combining

them together in our framework is meaningful. In addition,

in the context of the improved vehicle processing capacity,

our framework can still save more than 30% energy when V
is over 105, and this phenomenon indicates that our framework

always achieves a positive effect on the sensed data processing

for vehicular crowdsensing applications.
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(a) Queue length (ω=1:1:1)
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(b) Queue length (ω=1:1:2)

Figure 6: The impact of processing densities and application weights.

Impact of different processing densities and application
weights on application performance: Fig. 6(a) presents the

queue length of three individual applications at the vehicle

side (i.e., Q and D) and the VM side (i.e., L) when V = 106.

We can see that, the application with the highest processing

density (denoted by “High”) accumulates more unprocessed

data at the queue Q and L. The reasons are two-fold. First,

processing its data at the vehicle side will consume a lot of

energy in terms of the expression of factor c, and hence the

framework prefers to offload its data to the VM side for energy

saving. Second, in terms of the expression of factor e, only

when its queue length reaches a high level, the framework will

schedule resources to its VM. Indeed, we can find that the

peak value of the “High” application is roughly 4 times larger

than that of the “Middle” application in the queue Q and L,

which is similar to the ratio of their processing densities (i.e.,

10000:2500=4). For the application with the lowest processing

density, it will be scheduled to utilize both vehicle resources

and VM resources, and therefore it can be processed more

quickly. In other words, our framework implicitly introduces

“priorities” to the crowdsensing applications in terms of their

processing densities, and it should complement those applica-

tions with high processing densities such as increasing their

application weights to achieve fairness.

In order to study the impact of different application weights

on application performance, we change the weight of the

“High” application to 2, and conduct the simulation again to

generate the results as shown in Fig. 6(b). We can see that, the

queue length of the “High” application is significantly reduced

and achieves the similar trend with that of the “Middle”

application at both vehicle and VM side. This is because

that increasing the application weight not only speeds up its

scheduling at vehicle side, but also increases the “importance”

of its corresponding VM to obtain VM pool resources. This

observation justifies that by increasing the weights of the

applications with high processing densities properly, multiple

crowdsensing applications can achieve fairness in our frame-

work. In addition, we should emphasize that, increasing the

weights of some applications apparently reduces their time-

average application latencies, while has little influence on the

overall energy saving ratio.
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(a) Different chose vehicle amount
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(b) Different application amount

Figure 7: Performance comparisons among different frameworks.

Performance comparisons: We compare our framework

with two state-of-the-art works: (1) DualControl [14], a user-

operator cooperative task scheduling policy where the user

adjusts its CPU speed and the operator allocates the VM

pool resources to adaptive user VM (i.e., user-oriented) op-

timally, in order to maximize the cooperative utility. In the

simulation, we substitute the single task workload queue in

this work with the processing cycle queue (i.e., the input

workloads×processing density) to tolerate heterogeneous ap-

plications, set an exclusive vCPU to each vehicle as the VM

plan, and allow each vehicle to select three kinds of CPU

frequency (i.e., 0.5, 1 and 2 GHz). (2) D2D-Fogging [15],

an operator-controlled binary task offloading policy which

optimally selects a task helper for a task owner (i.e., V2V

matching) as mentioned in Section II. Note that, we consider
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these comparable works since they operate by the centralized

control (i.e., mobile network providers), and also support the

long-term and network-wide optimization by the Lyapunov

theory. Besides, we also compare our framework with the Ideal
case as mentioned in Section VI-D, where each vehicle can

establish an arbitrary number of V2V links in a time slot.

As for the simulation settings, we fix the parameter V to

105 and conduct the performance comparisons in terms of

the number of chose vehicles (total vehicle amount is 500

and each chose vehicle runs three apps with 400, 2500 and

10000 processing density, respectively) and the number of

crowdsensing applications (100 chose vehicles from 500 total

vehicles and the processing density of each application is

2500). The other simulation parameters remain unchanged, for

instance, we consider the physical resources of VM pool is 20

vCPUs with the load dynamics in Fig. 4(b).

The results are depicted in Fig. 7. Fig. 7(a) shows that, as

the number of chose vehicle increases, all the framework per-

formances degrade rapidly, due to the increase in the amount

of overall arrival workloads and the decrease in the amount of

resource-free cooperative vehicles. In addition, our framework

supporting both VM-based and V2V-based computing can

achieve better performance especially when the chose vehicle

amount is small. For example, ours can obtain 82% – 130%

performance gain compared with DualControl, and 28% –

58% performance gain compared with D2D-Fogging. The

reasons are two-fold. First, our framework can make full use

of resource-free cooperative vehicles to facilitate the chose

vehicles. Second, our framework exploits the application-

oriented model for the VM pool, which is more suitable

for the crowdsensing application scenario compared with the

device-oriented model in DualControl, since the vehicular

crowdsensing campaign generally will recruit a large number

of vehicles to cover large-scale areas. Fig. 7(b) shows that,

as the number of application increases, all the framework

performances degrade slowly, which indicates that they can

effectively cope with multiple applications simultaneously.

Despite of this, our performance still achieves 56% – 120%

performance gain compared with DualControl, and 37% – 60%

performance gain compared with D2D-Fogging. To sum up,

our framework can benefit from both cooperative vehicle and

VM pool resources, and thus its performance is much better.
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(b) Time for the Step 2

Figure 8: The execution time of the TaskSche algorithm.

Framework complexity: We numerically evaluate the run-

ning time of the TaskSche algorithm with a large vehicle

and application amount. Fig. 8 presents the results using an

Intel Core i5-2400 Processor@3GHz. First, with the vehicle

amount increasing, the execution time for the linear program-

ming using the Simple method plus the minimum weighted

graph matching using the Blossom algorithm (i.e., Step 1)

increases greatly, and the time consumption is around 320ms

for 2000 vehicles (half of them are chose to run applications).

Nevertheless, if we partition the whole vehicle graph into

several connected components (i.e., using Tarjan algorithm)

and apply the Simple method and the Blossom algorithm for

each component in parallel, then the overall execution time can

reduce at least 50%. That is, our framework should adopt this

divide-conquer principle to support a larger number of vehicles

in practice. Second, with the application amount increasing,

the execution time for the knapsack-based resource allocation

solution at the VM pool (i.e., Step 2) keeps small with a slight

increase (i.e., less than 16ms). To sum up, our framework

scales well for a large number of vehicles and applications.

VIII. CONCLUSION

In this paper, we proposed Chimera, a novel hybrid edge

computing framework, integrated with the emerging edge

cloud radio access network, to augment network-wide vehi-

cle resources for future large-scale vehicular crowdsensing

applications, by leveraging a multitude of cooperative vehicles

and the VM pool via the application manager control in

the edge cloud. We presented a comprehensive framework

model and formulated a novel multi-vehicle and multi-task

offloading problem aiming at minimizing the energy con-

sumption of network-wide recruited vehicles serving hetero-

geneous crowdsensing applications, meanwhile considering

a series of practical constraints. We designed TaskSche, an

online task scheduling algorithm, in which an efficient task

workload assignment policy based on graph transformation

and a knapsack-based VM pool resource allocation policy

were devised as the core components. We also discussed some

practical extensions of the framework. Rigorous theoretical

analyses and extensive trace-driven simulations showed that it

could save substantial energy for network-wide vehicles and

scale well for a large number of vehicles and applications.
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