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Abstract—In this paper, we study the phase transition behavior
of k-connectivity (k = 1, 2, ...) in wireless multi-hop networks
where a total of n nodes are randomly and independently
distributed following a uniform distribution in the unit cube
[0, 1]d (d = 1, 2, 3), and each node has a uniform transmission
range r(n). It has been shown that the phase transition of
k-connectivity becomes sharper as the total number of nodes
n increases. In this paper we investigate how fast such phase
transition happens, and derive a generic analytical formula for
the phase transition width of k-connectivity for large enough n
and for any fixed positive integer k in d-dimensional space by
resorting to a Poisson approximation for the node placement.
This result also applies to mobile networks where nodes always
move randomly and independently. Our simulations show that
to achieve a good accuracy, n should be larger than 200 when
k = 1 and d = 1; and n should be larger than 600 when
k ≤ 3 and d = 2, 3. The results in this paper are important
for understanding the phase transition phenomenon; and it also
provides valuable insight into the design of wireless multi-hop
networks and the understanding of its characteristics.

Index Terms—phase transition width, k-connectivity, connec-
tivity, wireless multi-hop networks, transmission range, average
node degree, random geometric graph.

I. INTRODUCTION

W IRELESS multi-hop networks have been extensively
investigated and discussed in recent years. Generally,

a wireless multi-hop network, e.g., wireless ad hoc network
or wireless sensor network, consists of a group of nodes that
communicate with each other over wireless channels [1], [2].
The nodes in such a network operate in a decentralized and
self-organized manner and each node can, if needed, act as
a router to forward traffic towards its destination [3], [4].
For such wireless multi-hop networks, connectivity (or 1-
connectivity) is a prerequisite for providing many network
functions [3], [5]. Furthermore, in many applications, k-
connectivity for k > 1 is required to attain certain properties
such as unique localizability [6], [7], robustness in routing [8],
fault tolerance [9], [10], etc.

The network is said to be connected (or 1-connected) iff
(if and only if) for any pair of two nodes, there is at least
one path between them. The network is k-connected iff there
is no set of (k − 1) nodes whose removal will make the
network trivial or disconnect the network. In other words, if
any (k−1) nodes fail in the network, the network still remains
connected. In this paper, we shall assume a connection model
which postulates a transmission range with the property that
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any two nodes are connected if and only if they are closer
than the transmission range. In the context of k-connectivity,
for a finite n, it has been shown that there exists a threshold
of transmission range above which the network is k-connected
with a high probability; and there also exists a threshold of
transmission range below which the network is k-connected
with a low probability, i.e. the network is more likely not k-
connected. The difference between the two thresholds defines
the so-called phase transition width. In the later part of the
paper, we will give a more rigorous definition of the phase
transition width. Intuitively, the phase transition width gives
an indication on how easy/difficult it is to transform a network
that is not k-connected into a k-connected network. It has
been shown that the phase transition width becomes sharper
as the total number of nodes n increases [3], [11], [12],
[13]. When n approaches infinity, the phase transition width
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Fig. 1. An illustration of the phase transition behavior of 1-connectivity in
2-dimensional networks through simulations in which a total of n nodes are
randomly and uniformly distributed on a unit square. The probability that the
network is 1-connected transits from nearly zero to nearly one over a small
range of values of the transmission range r(n), and the transition becomes
steeper as the number of nodes n increases.

approaches zero and the two aforementioned thresholds will
converge to the same value. As an example, Fig. 1 shows the
phase transition behavior of 1-connectivity in 2-dimensional
networks through simulations. As shown in the figure, when
the total number of nodes n is large (e.g., n = 1000),
it takes a small increase in the transmission range to turn
a disconnected network into a connected network. A good
understanding of such a phase transition phenomenon is of
practical significance for the design of wireless multi-hop
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networks, because it is energy efficient to set the transmission
range to be just above the critical threshold for a connected
network. If the transmission range is too high, it will waste
energy on radio communication and result in interference
[14]. For higher dimensional networks (i.e., d = 2, 3), all the
analytical results hitherto derived on the critical transmission
range, at which the network is connected or k-connected, are
for an asymptotically infinite number of nodes (e.g., [4], [15],
[16]). For such a network of an asymptotically infinite number
of nodes, the phase transition from not being k-connected to
being k-connected occurs at a precise transmission range, and
the phase transition width is zero. However, in practice, the
total number of nodes in the network is finite. So it is crucial
to study not just the critical transmission range itself, but the
width of the phase transition region, since the phase transition
from not being k-connected to being k-connected no longer
occurs abruptly.

The central aim of this paper is to investigate analytically
how quickly the phase transition of k-connectivity happens in
a wireless multi-hop network. We consider that the network is
formed in such a way that a total of n nodes are randomly and
independently distributed in the unit cube [0, 1]d (d = 1, 2, 3)
following a uniform distribution, each node has a uniform
transmission range r(n), and any two nodes can communicate
with each other iff their Euclidean distance is at most r(n).
As an example, Fig. 2 shows an illustration of such network
model for different values of d. This model is simple but useful
for gaining insights into the operation of wireless multi-hop
networks, and it has been widely used by many researchers [3],
[4], [5], [6], [11], [15], [17], [18], [19], [20]. In addition, the
results obtained using this model can also be extended to other
network models. To quantify how fast the phase transition of
k-connectivity occurs, we use a metric called phase transition
width, which is also referred to as threshold width in some
papers. Let Pk(n, r(n)) denote the probability that an instance
of a randomly generated network is k-connected. The mapping
r(n) → Pk(n, r(n)) is strictly monotonically increasing with
0 < Pk(n, r(n)) < 1 in some finite interval of r(n), and
Pk(n, r(n)) = 0 or 1 outside the interval [12]. Let α denote
a positive real number. Then define

rk(n, α) := inf(r > 0 : Pk(n, r) ≥ α), α ∈ (0, 1). (1)

By the definition of rk(n, α) and the strict monotonicity of
r(n) → Pk(n, r(n)), we can readily obtain Pk(n, rk(n, α)) =
α. The phase transition width over the probability interval
[α, 1− α] of k-connectivity is then defined as

δk(n, α) := rk(n, 1− α)− rk(n, α), α ∈ (0,
1
2
). (2)

Henceforth, unless otherwise indicated, the short term phase
transition width will be used with α being simply understood.
Note that the definition of the phase transition width given by
Eq. 2 is closely related to the so-called finite size scaling in
the physics of percolation and related phenomenon [21], [22].

Previous results derived on the phase transition width of k-
connectivity are only for k = 1 and d = 1, 2, and there is no
generic result for all k > 0 and d ∈ {1, 2, 3}. In this paper, we
investigate further improvements on the previous results and

derive a generic analytical formula for the phase transition
width δk(n, α) of k-connectivity for large n and for any fixed
positive integer k > 0 in d-dimensional space (d = 1, 2, 3)
(Corollary 1). To derive the analytical results, we approximate
the node placement (i.e., uniform point process) by a Poisson
point process. Such approximation has been widely used in
this area, and is shown to be accurate for large n [3], [4],
[23], [24], [25]. More details about this Poisson approximation
will be given in section V. Based on the result, we then
compare the phase transition width for different values of d
by fixing k, n and α, which shows that the phase transition
width δk(n, α) is larger for higher dimensional networks than
that for lower dimensional networks. Similarly we compare
the phase transition width for different values of k by fixing
d, n and α, which shows that for large n the phase transition
width of k-connectivity is approximately the same as the phase
transition width of (k+1)-connectivity. Alternatively, one may
also investigate the phase transition width in terms of the
average node degree, i.e. the average number of neighbors
per node. This paper also provides an analytical result for the
phase transition width measured in the average node degree
(Theorem 2). A formal definition of this newly defined phase
transition width, denoted as δ′k(n, α), will be given in section
III. Surprisingly, the newly defined phase transition width turns
out to be independent of n and k for large n. We also conduct
corresponding simulations to verify our theoretical analysis.
Our simulation results show that to achieve a good accuracy,
n should be larger than 200 when k = 1 and d = 1; and n
should be larger than 600 when k ≤ 3 and d = 2, 3. Our
result also applies to mobile networks where nodes always
move randomly and independently [10], [26]. To the best of
our knowledge, our generic results have never been presented
before. These results provide valuable insights into the design
and operation of wireless multi-hop networks.

The rest of this paper is organized as follows. Section II
briefly reviews related work. Section III describes the models
and some basic concepts of graph theory used in the paper.
Section IV presents the main results of the paper concerning
on the phase transition width of k-connectivity for large n
and for any fixed positive integer k in d-dimensional space
(d = 1, 2, 3). Section V presents proofs for the main results.
Section VI presents the simulation results. Finally, Section
VII concludes this paper and discuss possible future research
directions.

II. RELATED WORKS

There has been extensive work on the phase transition
phenomenon in the past several years. Extensive results have
been obtained for Bernoulli random graphs [27]. Usually, a
Bernoulli random graph is obtained by randomly distributing
n vertices and connecting any pair of two vertices with
probability p(n), independently of all other pairs of vertices
and the Euclidean distance between the two vertices. Friedgut
et al. [28] proved that all monotone graph properties1 have
a sharp threshold in a Bernoulli random graph, and the
threshold width is δ(n, ε) = O(log ε−1/ log n). However,

1The definition of monotone property is given in Section III.
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Fig. 2. An illustration of the network model in d-dimensional space (d = 1, 2, 3). A total of n nodes are randomly and independently distributed in a unit
cube [0, 1]d following a uniform distribution; each node has a uniform transmission range r(n), and any two nodes can communicate with each other iff
their Euclidean distance is at most r(n).

the techniques used for Bernoulli random graphs cannot be
applied straightforwardly to random geometric graphs, because
in random geometric graphs, the probability of existence of
a link between two different nodes is dependent on their
Euclidean distance.

In [11], Krishnamachari et al. demonstrated the ubiquity
of the phase transition phenomenon for monotone graph
properties in Bernoulli random graphs and random geometric
graphs, and presented some examples in wireless ad hoc
networks where a phase transition phenomenon exists, such
as connectivity, coordination and probabilistic flooding for
route discovery. They then pointed out the significance of
understanding phase transitions. In [13], Krishnamachari et al.
investigated three distributed configuration tasks in wireless
multi-hop networks, i.e., partition into coordinating cliques,
Hamiltonian cycle formation and conflict-free channel alloca-
tion. They showed that these tasks undergo phase transitions
with respect to transmission range, and argued that phase
transition analysis is useful for quantifying the critical range
of energy and bandwidth resources needed for the scalable
performance of self-configuring wireless networks. In [4],
Ravelomanana showed that the coverage property is subject
to abrupt phase transition in 3-dimensional wireless sensor
networks. In [6], Aspnes et al. exhibited with simulation evi-
dence the phase transition for localizability in wireless sensor
networks. And in [29], Raghavan et al. investigated phase
transition behaviors for the emergence of a giant component in
wireless sensor networks and obtained an expression for the
critical radius at which the network has a giant component
with high probability.

The critical threshold of transmission range was investigated
for infinite n in [15], [16] and finite n in [3]. Gupta et
al. in [15] proved that if the transmission range is set to

r(n) =
√

log n+c(n)
πn , the resulting network is asymptotically

connected with probability one iff c(n) → ∞ as n → ∞,
where the network is formed by uniformly placing n nodes
in a unit disc in <2. They also conjectured that the net-

work is asymptotically disconnected with probability one iff
c(n) → −∞ as n → ∞. In [16], Wan et al. derived a
precise critical transmission range at which the network is k-
connected (k > 0) with probability one as n tends to infinity,
where the network is formed by randomly placing n nodes
following a uniform distribution in a unit square or disk in
<2. In [3], Bettstetter investigated the minimum node degree
and k-connectivity, where the network is formed by randomly
placing n nodes with a uniform distribution in a square of size
A in <2. Both theoretical results and simulation results showed
that k-connectivity undergoes phase transition with respect to
transmission range.

In [30], Goel et al. proved that all monotone properties in
random geometric graph have a sharp threshold. Furthermore,
the threshold width for random geometric graphs is much
sharper than for Bernoulli random graphs. They showed that
for every monotone property, the threshold width δ(n, ε) is

δ(n, ε) =





O(log1/2 1
ε/n1/2), d = 1

O(log3/4 n/n1/2), d = 2
O(log1/d n/n1/d), d ≥ 3

(3)

However, Han et al. [12] found that while the results in
[30] were derived for a generic monotone property, they
may be further sharpened for certain specific monotone graph
properties such as connectivity. They were seeking to improve
the results given by Goel for the property of connectivity
in one and two dimensional spaces, and derived the phase
transition width for large n, i.e.,

δ1(n, ε) =

{
C(ε)

n + o(n−1), d = 1
C(ε)

2

√
1

πn log n (1 + o(1)), d = 2
(4)

where C(ε) = log( log ε
log(1−ε) ). The results are much sharper

than the results given in Eq. 3, which indicates that the results
in Eq. 3 can be quite conservative for specific monotone
properties.
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In this paper, we investigate further improvements on Han
et al’s results. We investigate the phase transition width of k-
connectivity for any positive integer k in d-dimensional spaces
(d = 1, 2, 3). To the best of our knowledge, our generic results
have never been presented before.

III. PRELIMINARIES

For many purposes, a wireless multi-hop network can be
represented as an undirected graph G(V, E) with a set of
vertices V and a set of edges E. Each vertex of the set V
uniquely represents a node in the network and each edge of the
set E uniquely represents a wireless link in the network, and
vice versa. The graph G(V, E) is called the underlying graph
of the network. In the past several years, the so-called random
geometric graph has been widely used to represent such
wireless multi-hop networks [3], [6], [11], [15], [17], [31],
[14]. Throughout this paper, our network model is represented
by a random geometric graph G(n, r(n)). Typically, a random
geometric graph G(n, r) is defined as:

Definition 1 ( [18], [23]). Given n ∈ N and r ∈ [0, 1], a
random geometric graph G(n, r) is a graph in which n vertices
are randomly and independently distributed in a unit cube
[0, 1]d (d = 1, 2, 3, ...) in <d following a uniform distribution,
and any two vertices u and v are directly connected iff
‖u− v‖ ≤ r, where ‖ · ‖ means the Euclidean norm.

A graph property Λ is a set of undirected and unlabeled
graphs. A monotone graph property is usually defined as:

Definition 2 ( [30], [32]). A graph property Λ is increasing
iff

G ∈ Λ ⇒ (∀G′)[(V (G′) = V (G)
and E(G) ⊆ E(G′)) ⇒ G′ ∈ Λ].

A graph property Λ is said to be monotone if either Λ or its
complement Λc is increasing.

The degree of a node u, denoted as deg(u), is the number
of its neighbors directly connected to it [33]. A node of degree
zero is called an isolated node (refer to Fig. 3-i). The minimum
node degree of a graph G is defined as

degmin(G) = min
u∈V (G)

{deg(u)},

and the average node degree of a graph G is

C(G) =
1
n

∑

u∈V (G)

deg(u).

A graph is said to be k-vertex connected (k-connected
for simplicity) iff for any pair of two nodes there exist at
least k mutually independent paths connecting them [33],
i.e., these paths do not share a common node except for the
beginning and the end of the path, (refer to Fig. 3-ii and 3-
iii). Equivalently, a graph is k-connected iff there is no set of
(k−1) nodes whose deletion will make the network trivial or
disconnected. In other words, a k-connected network is able to
sustain the failure of (k− 1) nodes, which is a very desirable
property for the design of robust routing protocols. A graph

i. disconnected 
G


isolated node


ii. 1-connected 
G
 iii. 2-connected 
G


Fig. 3. An illustration of graph k-connectivity. Note that 1-connectivity has
the same meaning as connectivity.

is said to be k-edge connected iff for any pair of two nodes
there exist at least k mutually edge disjoint paths connecting
them. Throughout this paper, we use the term k-connectivity
as shorthand for k-vertex connectivity.

In addition to the definition of δk(n, α), we shall define the
phase transition width δ′k(n, α) measured using the average
node degree as follows:

Definition 3. Consider a random geometric graph G(n, r(n))
in <d (d = 1, 2, 3), a fixed positive integer k > 0 and a real
number α > 0. Let C(n) denote the average node degree of
G(n, r(n)), and let Pk(n,C(n)) denote the probability that
G(n, r(n)) is k-connected. Define

Ck(n, α) := inf(C > 0 : Pk(n,C) ≥ α), α ∈ (0, 1). (5)

The new phase transition width δ′k(n, α) of k-connectivity in
terms of the average node degree is

δ′k(n, α) := Ck(n, 1− α)− Ck(n, α), α ∈ (0,
1
2
). (6)

For a random geometric graph G(n, r(n)), if the boundary
effect is ignored, the average node degree C(n) is given as:
C(n) = 2nr(n) for d = 1, C(n) = πnr2(n) for d = 2 and
C(n) = 4

3πnr3(n) for d = 3 [3], [4]. These easily-derived
relations will be used later for relating the two definitions of
phase transition width, i.e., δk(n, α) and δ′k(n, α).

Throughout the paper, we will use standard mathematical
notations concerning the asymptotic behavior of functions, i.e.,
f(n) = o(g(n)) or f(n) ¿ g(n) if f(n)

g(n) → 0 as n → ∞;
f(n) = O(g(n)) if there exists a constant c and a value n0

such that f(n) ≤ c · g(n) for all n ≥ n0 [34]. Symbols “o”
and “O” always apply in the limiting case when n →∞. To
avoid trivialities, we assume n to be sufficiently large. Define
the notation (·)+ as y+ = y if y ≥ 0 and y+ = 0 if y ≤ 0.
Define πd (d = 1, 2, 3) as π1 = 1, π2 = π and π3 = 4

3π.

IV. MAIN RESULTS

In this section, we present the main results on the phase
transition width δk(n, α) of k-connectivity (k > 0) in d-
dimensional space (d = 1, 2, 3). The proofs are deferred to
the next section. For any node u located close to the border
of the network area, the coverage area of u, i.e., a sphere
centered at u with radius r(n), may be located partially
outside the network area. These boundary nodes will have
lower average node degree compared with the nodes located
in the inner part of the network area. This effect is called the
boundary effect [25], [35]. Fig. 4 shows an example of the
boundary effect in a 2-dimensional network. When d > 1,
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it is complicated to quantify the impact of the boundary
effect regarding this specific problem on the probability of
k-connectivity, especially for k > 1. In this paper, we ignore
the boundary effect in our derivation for d = 2, 3.

r(n)
r(n)


r(n)


r(n)


Fig. 4. An illustration of boundary effects in a 2-dimensional network. The
nodes located close to the border of the network area have lower average node
degree compared with the nodes located in the inner part of the network area.

First, our main result on rk(n, α) for large n is given in the
following:

Theorem 1. For a random geometric graph G(n, r(n)) in <d

(d = 1, 2, 3), a fixed positive integer k > 0 and a positive
real number α ∈ (0, 1), let rk(n, α) denote the smallest
transmission range at which the probability that G(n, r(n))
is k-connected is at least α. Ignore the boundary effect except
when d = 1. Then, for large n, rk(n, α) is given by

rk(n, α) =
(

F (n, k)
πdn

) 1
d

− log
(
log

(
1
α

))
(1 + o(1))

d(πdn)
1
d (F (n, k))

d−1
d

, (7)

where

F (n, k) := log n + (k − 1) log(log n)− log(k − 1)!. (8)

Remark. Eq. 7 given in Theorem 1 confirms Theorem 11
in [6]. It is noted in Theorem 11 that given a 2-connected
network in <2, if we double the transmission range, then
the resulting network becomes globally rigid. Eq. 7 yields
2r2(n, α) > r6(n, α) for all large n. Given that 6-connectivity
is a sufficient condition for global rigidity in <2 [36], we can
obtain that the network with transmission range 2r2(n, α) is
globally rigid with high probability. In addition, the transmis-
sion range given by Eq. 7 has a similar asymptotic behavior
compared with the one given in [5] as n goes to infinity.

Second, the desired result on the phase transition width
δk(n, α) for large n is given in the following Corollary 1.

Corollary 1. Consider a random geometric graph G(n, r(n))
in <d (d = 1, 2, 3), a fixed positive integer k > 0 and a
positive real number α ∈ (0, 1

2 ). Ignore the boundary effect
except when d = 1. Then, for large n, the phase transition
width of k-connectivity δk(n, α) is given by

δk(n, α) =
log

(
log α

log(1−α)

)

d (πdn)
1
d (F (n, k))

d−1
d

(1 + o(1)). (9)

Remark. Comparing Eq. 4 and Eq. 9, we can see that when
k = 1 and d = 1, 2, Eq. 9 readily reduces to Eq. 4 which
appears in [12]. Although we have derived the phase transition
width of k-connectivity given by Eq. 9, this result holds only
when n is sufficiently large. When n is a small number
(especially n is comparable with k!), this result does not
hold any more. This observation is shown by our proof of
Theorem 1 and our later simulation results (there is significant
discrepancy between analytical results and simulation results
for small n). Also, our simulation results show that n should
be larger than 200 when d = 1 and k = 1; and n should be
larger than 600 if k ≤ 3 and d = 2, 3.

Based on Corollary 1, three further corollaries can also be
obtained.

Corollary 2. Consider a random geometric graph G(n, r(n))
in <d (d = 1, 2, 3), a fixed positive integer k > 0 and a
positive real number α ∈ (0, 1

2 ). Ignore the boundary effect
except when d = 1. Then, the phase transition width of k-
connectivity δk(n, α) and the phase transition width of (k+1)-
connectivity δk+1(n, α) satisfy

lim
n→∞

δk+1(n, α)
δk(n, α)

= 1. (10)

Remark. Corollary 2 means that for large enough n,
δk+1(n, α) ≈ δk(n, α). In other words, the increase in the
transmission range for making the probability that the network
is k-connected increase from almost zero to almost one is
approximately the same as that required for making the
probability that the network is (k+1)-connected increase from
almost zero to almost one.

Corollary 3. Consider a random geometric graph G(n, r(n))
in <d (d = 1, 2, 3), a fixed positive integer k > 0 and a
positive real number α ∈ (0, 1

2 ). Ignore the boundary effect
except when d = 1. Then, for large n, the phase transition
width of k-connectivity δk(n, α) in (j + 1)-dimensional space
is larger than that in j-dimensional space, where j = 1, 2.

Remark. Corollary 3 is an easy consequence of the main
result (Corollary 1). It indicates that in a higher dimensional
network, more transmission power is needed in order to make
the probability that the network is k-connected increase from
almost zero to almost one.

Corollary 4. Consider a random geometric graph G(n, r(n))
in <d (d = 1, 2, 3), and a fixed positive integer k > 0 and a
positive real number α ∈ (0, 1

2 ). Ignore the boundary effect ex-
cept when d = 1. Then, for large n, the variation of the phase
transition width of k-connectivity δk(n, α) with α is separable
from the variation with n, k and d in the sense that for some
functions T and Y , there holds δk(n, α) = T (α)Y (n, k, d).

Remark. Corollary 4 means that if we learn the phase transi-
tion width for any α ∈ (0, 1

2 ), it is easy to obtain it for any
other α ∈ (0, 1

2 ) given that n, k and d are fixed.

In addition to the results for δk(n, α) in terms of the
transmission range, using the similar technique for proving
Theorem 1 and Corollary 1, and the relation between the
average node degree and the transmission range as shown in
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section III, we can obtain the following theorem for δ′k(n, α)
in terms of the average node degree:

Theorem 2. Consider a random geometric graph G(n, r(n))
in <d (d = 1, 2, 3), a fixed positive integer k > 0 and a
positive real number α ∈ (0, 1

2 ). Ignore the boundary effect
except when d = 1. Then, for large n, the phase transition
width of k-connectivity δ′k(n, α) in terms of the average node
degree is given by

δ′k(n, α) =





2 log
(

log α
log(1−α)

)
+ o(1), d = 1;

log
(

log α
log(1−α)

)
+ o(1), d ≥ 2.

(11)

Remark. Theorem 2 indicates that for large enough n, the
phase transition width δ′k(n, α) measured in the average node
degree is only determined by α and is independent of n and
k. In addition, the phase transition width δ′k(n, α) for d = 2
and d = 3 are the same and are the half of that for d = 1.

V. PROOF OF THE MAIN RESULTS

In this section, we shall prove the main results given in
Section IV. First, we present the following Lemma 1 which
we will used below in our proof for Theorem 1.

Lemma 1. Consider a random geometric graph G(n, r(n))
in <d (d = 2, 3), a fixed positive integer k > 0 and a real
number ω ∈ <, let ξ(k, n, r(n)) be the expected number of
nodes with degree k. If the boundary effect is ignored, and
r(n) is given by

r(n) = rn(ω) =
(

F (n, k) + ω

πdn

) 1
d

, (12)

where F (n, k) is as defined in Eq. 8, the following holds:

ξ(k − 1, n, rn(ω)) = e−ω, k = 1. (13)
lim

n→∞
ξ(k − 1, n, rn(ω)) = e−ω, k > 1. (14)

Proof: As shown in [23, pp. 18], [24, pp. 39], [3], [4],
[37], for a set of n nodes, where each node is independently
and randomly placed in a finite region of volume V in <d,
the limiting case obtained by letting n → ∞ and V → ∞
while keeping n/V constant can be regarded as defining a
homogeneous Poisson point process of intensity ρ = n/V .
For large n and large V , i.e., n À 1 and V À πdr

d(n),
a homogeneous Poisson point process of intensity ρ = n/V
is a close approximation for the uniform distribution. Due to
the scaling property of random geometric graphs [23], any
realization G(n, r(n)) in a unit cube in <d coincides with
another realization G(n, d

√
V r(n)) placed in a cube of volume

V in <d. Hence, throughout this paper, we focus on G(n, r(n))
distributed in a unit cube in <d, and we assume n À 1 and
1 À πdr

d(n) so that a homogeneous Poisson point process of
intensity ρ = n/1 = n can be used to approximate the uniform
distribution for the node spatial distribution [18], [23].

Using the Poisson approximation and ignoring the boundary
effect, the probability that a particular node i (i = 1, 2, ..., n)
has m (m ≥ 0) neighbors, denoted as pi(m), is given by

pi(m) =

(
nπdr

d(n)
)m

m!
e−nπdrd(n), d = 2, 3. (15)

Therefore, by using the Palm Theorem [23, pp. 20, 155]
(which captures a form of spatial ergodicity property relating
the probabilities that a given node has a certain degree with
the expected number of nodes in a network that have a
certain degree), and ignoring the boundary effect, the expected
number of nodes with degree (k−1), ξ(k−1, n, r(n)), is given
by

ξ(k−1, n, r(n)) = n·pi(k−1) = n· (nπdr
d(n))k−1

(k − 1)!
e−nπdrd(n).

(16)
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Fig. 5. Expected number of nodes with degree k (k = 1, 2, 3). For the
analytical results, the boundary effect is ignored; for the simulation results,
the boundary effect is eliminated by using the toroidal distance metric [3].

We also conduct simulations to verify the accuracy of the
analytical formula given by Eq. 16. The analytical formula
given by Eq. 16 is derived by approximating the uniform point
process with a Poisson point process. In Fig. 5, the comparison
between the analytical results (Poisson point process approx-
imation) and the simulation results (uniform point process)
verifies the accuracy of the Poisson approximation.

For k = 1, substituting Eq. 12 into Eq. 16, we have

ξ(0, n, rn(ω)) = n · (nπdr
d(n))0

0!
e−nπdrd(n)

= n · exp
(
−n · πd · log n + ω

nπd

)

= e−ω,

which proves Eq. 14.
For k > 1, substituting Eq. 12 into Eq. 16, we have

lim
n→∞

ξ(k − 1, n, rn(ω))

= lim
n→∞

(
n · (F (n, k) + ω)k−1

(k − 1)!
· 1
n
· (k − 1)!
(log n)k−1

· e−ω

)

= e−ω lim
n→∞

(
1 +

(k − 1) log(log n)
log n

− log(k − 1)!
log n

+
ω

log n

)k−1

= e−ω,

which proves Eq. 14.
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A. Proof of Theorem 1

Now, we are able to prove Theorem 1. We first prove the
result for d = 2, 3 based on Penrose’s theorems (i.e., Theorem
1.1, Theorem 2.2) given in [18] and Lemma 1. Since Penrose’s
theorems in [18] are not valid for d = 1, we shall then prove
the result for d = 1 separately based on Theorem 15 given in
[38]. Note that some parts of the proof used here are similar
to the arguments used in [12].

1) Case when d = 2, 3: For d = 2, 3, we first introduce
two theorems by Penrose that are important for our proof. Let
γk(n) (respectively, τk(n)) denote the minimum transmission
range at which a random geometric graph G(n, r(n)) is k-
connected (respectively, has minimum node degree k). Penrose
has proved the following two theorems:

Theorem 3 (Theorem 1.1 in [18]). Consider a random geo-
metric graph G(n, r(n)) in <d (d ≥ 2). Given any integer
k > 0,

lim
n→∞

Pr{γk(n) = τk(n)} = 1. (17)

Theorem 4 (Theorem 1.2 in [18]). Consider a random geo-
metric graph G(n, r(n)) in <d (d ≥ 1). Let ω ∈ <. Given any
integer k > 0 and (rn)n≥1 satisfying the following condition

lim
n→∞

ξ(k − 1, n, rn) = e−ω, (18)

then it follows that

lim
n→∞

Pr{τk(n) ≤ rn} = exp(−e−ω). (19)

Remark. Theorem 3 above indicates that for very large value
of n, k-connectivity is predicted by the minimum node degree.
Theorem 4 shows that there is a relation between the propor-
tion of nodes with degree (k− 1) and the probability that the
network has minimum node degree k. It is also important to
notice that Theorem 3 is valid for d ≥ 2 and Theorem 4 is
valid for d ≥ 1.

For any ω ∈ < and any positive integer k > 0, Theorem 3
and Theorem 4 immediately yield

lim
n→∞

Pr{γk(n) ≤ rn(ω)}
= lim

n→∞
Pr{τk(n) ≤ rn(ω)} = exp(−e−ω). (20)

Hence, Eq. 20 and Lemma 1 yield

lim
n→∞

Pk(n, rn(ω)) = exp(−e−ω), (21)

which plays a key role in the proof of Theorem 1.
For each x ∈ <, define the [0, 1]-valued sequence

{σn(x), n = 1, 2, 3...} by

σn(x) = min

(
1,

(
F (n, k) + x

πdn

) 1
d

+

)
, n = 1, 2, ... (22)

Because for any fixed integer k > 0 and x ∈ <, F (n,k)
n → 0

as n →∞, there exists a finite integer N(k, x) such that

0 <

(
F (n, k) + x

πdn

) 1
d

< 1, ∀n > N(k, x).

Hence, we have

σn(x) =
(

F (n, k) + x

πdn

) 1
d

, ∀n > N(k, x). (23)

Therefore, from Lemma 1 and Eq. 21, we have

lim
n→∞

Pk(n, σn(x)) = exp(−e−x). (24)

Now fix x in <, from Eq. 24, we can obtain that for each
ε > 0, there exists a finite integer N(ε, k, x) such that

∣∣Pk(n, σn(x))− exp(−e−x)
∣∣ < ε, ∀n > N(ε, k, x). (25)

It can be easily found that the mapping < → <+ :
x → exp(−e−x) is strictly monotonically increasing
and continuous with limx→−∞ exp(−e−x) = 0 and
limx→∞ exp(−e−x) = 1. Therefore, for each α ∈ (0, 1),
there exists a unique value of x in <, denoted as xα, such that
exp(−e−xα) = α. In fact, from the equality exp(−e−xα) = α,
we have

xα = − log(− log α). (26)

Hence, fixing x in < is equivalent to fixing α in (0, 1). Now
fix α in the interval (0, 1), and let ε be sufficiently small such
that 0 < 2ε < α and α + 2ε < 1. Then applying Eq. 25 with
x = xα+ε and x = xα−ε respectively, we have
∣∣Pk(n, σn(xα+ε))− exp(−e−xα+ε)

∣∣ < ε, ∀n > N(ε, k, xα+ε)
(27)

and
∣∣Pk(n, σn(xα−ε))− exp(−e−xα−ε)

∣∣ < ε, ∀n > N(ε, k, xα−ε).
(28)

We always assume that n is sufficiently large when necessary.
In the rest of this sub-subsection V-A1, we assume that n >
N(ε, k, α) with

N(ε, k, α) = max{N(k, xα), N(ε, k, xα+ε), N(ε, k, xα−ε)},
where N(k, xα) represents the finite integer above which Eq.
23 holds.

Since exp(−e−xα±ε) = α ± ε, it can be readily obtained
from Eq. 27 and Eq. 28 that

α < Pk(n, σn(xα+ε)) < α + 2ε

and
α− 2ε < Pk(n, σn(xα−ε)) < α.

According to the definition of rk(n, α), we have
Pk(n, rk(n, α)) = α. Hence, from the last two inequalities, it
follows that

Pk(n, σn(xα−ε)) < Pk(n, rk(n, α)) < Pk(n, σn(xα+ε)).

Because of the strict monotonicity of the map r(n) →
Pk(n, r(n)), we have

σn(xα−ε) < rk(n, α) < σn(xα+ε). (29)

Define η(n, α) := rk(n, α)− σn(xα), then it can be obtained
from Eq. 29 that

σn(xα−ε)− σn(xα) < η(n, α) < σn(xα+ε)− σn(xα). (30)
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For any fixed k > 0 and x ∈ <, it is true that

lim
n→∞

x

F (n, k)

= lim
n→∞

x

log n + (k − 1) log(log n)− log(k − 1)!
= 0.

Hence, from Eq. 23, we have

σn(x) =
(

F (n, k) + x

πdn

) 1
d

=
(

F (n, k)
πdn

) 1
d

(
1 +

x

F (n, k)

) 1
d

=
(

F (n, k)
πdn

) 1
d

(
1 +

1
d

x(1 + o(1))
F (n, k)

)
, as n →∞.

Therefore, for any fixed k > 0 and α ∈ (0, 1), we have

σn(xα±ε)− σn(xα)

=
(

F (n, k)
πdn

) 1
d

(
1 +

1
d

xα±ε(1 + o(1))
F (n, k)

)

−
(

F (n, k)
πdn

) 1
d

(
1 +

1
d

xα(1 + o(1))
F (n, k)

)

=
(

F (n, k)
πdn

) 1
d xα±ε − xα

F (n, k)d
(1 + o(1)), as n →∞.(31)

Because Eq. 30 holds for all n > N(ε, k, α), it must be valid
when n → ∞ as well. And as n → ∞, the small order part
o(1) in Eq. 31 goes to zero. Hence, from Eq. 30 and Eq. 31,
we have

xα−ε − xα ≤ lim inf
n→∞


F (n, k)d(1 + o(1))

(
F (n,k)

πdn

) 1
d

η(n, α)




= lim inf
n→∞


 F (n, k)d

(
F (n,k)

πdn

) 1
d

η(n, α)




and

xα+ε − xα ≥ lim sup
n→∞


F (n, k)d(1 + o(1))

(
F (n,k)

πdn

) 1
d

η(n, α)




= lim sup
n→∞


 F (n, k)d

(
F (n,k)

πdn

) 1
d

η(n, α)


 .

Because ε can be chosen to be arbitrarily small, and as stated
earlier xα = − log(− log α) is a continuous and strictly
monotonically increasing function of α for α ∈ (0, 1), it can
be shown that

lim
ε↓0

(xα−ε − xα) = lim
ε↓0

(xα+ε − xα) = 0.

Hence, we have

lim inf
n→∞


 F (n, k)d

(
F (n,k)

πdn

) 1
d

η(n, α)




= lim sup
n→∞


 F (n, k)d

(
F (n,k)

πdn

) 1
d

η(n, α)


 = 0.

Thus, given that

lim
n→∞


 F (n, k)d

(
F (n,k)

πdn

) 1
d

η(n, α)


 = 0

holds, it must be true that

η(n, α) = o




(
F (n,k)

πdn

) 1
d

F (n, k)d


 = o

(
1

d (πdn)
1
d (F (n, k))

d−1
d

)
.

Hence, we have

rk(n, α) = σn(xα) + η(n, α)

=
(

F (n, k) + xα

πdn

) 1
d

+ o

(
1

d (πdn)
1
d (F (n, k))

d−1
d

)

=
(

F (n, k)
πdn

) 1
d

(
1 +

xα(1 + o(1))
F (n, k)d

)

+o

(
1

d (πdn)
1
d (F (n, k))

d−1
d

)

=
(

F (n, k)
πdn

) 1
d

− log
(
log

(
1
α

))
(1 + o(1))

d(πdn)
1
d (F (n, k))

d−1
d

.

The proof of Theorem 1 for d = 2, 3 is complete.
2) Case when d = 1: For d = 1, when k = 1, Eq. 7 readily

becomes Han et al’s result (see Eq. 4 in [12]), therefore, the
result given in Theorem 1 is true for d = 1 and k = 1.

When k > 1, we shall prove the result based on Theorem
15 given in [38]. It is noted in Theorem 15 in [38] that given
a random geometric graph G(n, r(n)) in 1-dimensional space
and ω ∈ <, for any positive integer k > 1, if r(n) is given by

r(n) =
1
n

(log n + (k − 1) log(log n)− log(k − 1)! + ω),

then
lim

n→∞
Pk(n, r(n)) = exp(−e−ω).

Based on the critical radius given in Theorem 15 of [38]
and using the same technique as described in sub-subsection
V-A1, we can obtain

rk(n, α) =
F (n, k)

n
− log

(
log

(
1
α

))
(1 + o(1))

n
, d = 1,

which agrees with the result given in Theorem 1 for d = 1
and k > 1. The proof of Theorem 1 for d = 1 is complete. It
is important to notice that the boundary effect affects neither
the derivation of Han et al’s result in [12] nor the derivation
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of Theorem 15 in [38]. Hence, our result in this paper is not
affected by the boundary effect when d = 1.

Combining sub-subsections V-A1 and V-A2, we have finally
proved Theorem 1.

B. Proof of Corollary 1

Based on Theorem 1, for any fixed positive integer k > 0
and d ∈ {1, 2, 3}, the phase transition width δk(n, α) for large
n given in Corollary 1 can readily be derived as

δk(n, α) = rk(n, 1− α)− rk(n, α)

=
(

F (n, k)
πdn

) 1
d

−
log

(
log

(
1

1−α

))
(1 + o(1))

d(πdn)
1
d (F (n, k))

d−1
d

−
(

F (n, k)
πdn

) 1
d

+
log

(
log

(
1
α

))
(1 + o(1))

d(πdn)
1
d (F (n, k))

d−1
d

=
log

(
log α

log(1−α)

)

d(πdn)
1
d (F (n, k))

d−1
d

(1 + o(1)).

The proof of Corollary 1 is complete.

C. Proof of Corollary 2

Based on Corollary 1, for any fixed positive integer k > 0
and d ∈ {1, 2, 3}, we have

lim
n→∞

δk+1(n, α)
δk(n, α)

= lim
n→∞

(
d(πdn)

1
d (F (n, k))

d−1
d (1 + o(1))

d(πdn)
1
d (F (n, k + 1))

d−1
d (1 + o(1))

)

= lim
n→∞

(
log n + (k − 1) log(log n)− log(k − 1)!

log n + k log(log n)− log k!

) d−1
d

= lim
n→∞

(
1 + (k−1) log(log n)

log n − log(k−1)!
log n

1 + k log(log n)
log n − log k!

log n

) d−1
d

= 1.

The proof of Corollary 2 is complete. From Corollary 2, we
can obtain that δk+1(n, α) ≈ δk(n, α) for large enough n.

As an example, Fig. 6 shows the analytical results for the
phase transition width of k-connectivity (k = 1, 2, 3) in 2-
dimensional space, which are calculated from Eq. 9 (set d = 2
and k = 1, 2, 3). α is set two typical values, i.e., 0.4 (close
to 0.5) and 0.01 (close to 0). n is set up to a large value
(i.e.,10000) so that the way in which δk(n, α) varies with n
can be observed. Note that in the calculation, we omit the
small order part, i.e., o(1) in (1 + o(1)).

D. Proof of Corollary 3

Let δ
(d)
k (n, α) denote the phase transition width of k-

connectivity in d-dimensional space as we want to emphasize
the dependence of δk(n, α) on d. Let j be either 1 or 2. Then,
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Fig. 6. Analytical results for the phase transition width of k-connectivity
(k = 1, 2, 3) in 2-dimensional space. The value of α is fixed in each scenario.

based on Corollary 1, we have

δ
(j+1)
k (n, α)

δ
(j)
k (n, α)

=

log( log α
log(1−α) )(1+o(1))

(j+1)(πj+1n)
1

j+1 (F (n,k))
j

j+1

log( log α
log(1−α) )(1+o(1))

j(πjn)
1
j (F (n,k))

j−1
j

=
j

j + 1
(πj)

1
j

(πj+1)
1

j+1

(
n

F (n, k)

) 1
j(j+1)

(1 + o(1)).(32)

For any fixed positive integer k > 0 and j (either j = 1 or
j = 2), there exists a finite integer N(k, j) such that

j

j + 1
(πj)

1
j

(πj+1)
1

j+1

(
n

F (n, k)

) 1
j(j+1)

(1 + o(1)) > 1

for all n > N(k, j). Hence, from Eq. 32, we have
δ
(j+1)
k (n, α) > δ

(j)
k (n, α) (j = 1, 2) for large n. The proof

of Corollary 3 is complete.
As an example, Fig. 7 shows the analytical results for

the phase transition width of 1-connectivity in d-dimensional
space (d = 1, 2, 3), which are calculated using Eq. 9 (k = 1
and d = 1, 2, 3). Other settings are the same as in Fig. 6. In the
calculation, we still omit the small order part o(1) in (1+o(1)).
We can see that δ

(3)
k (n, α) > δ

(2)
k (n, α) > δ

(1)
k (n, α) when n

is larger than a certain threshold.
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Fig. 7. Analytical results for the phase transition width of 1-connectivity in
d-dimensional space (d = 1, 2, 3). The value of α is fixed in each scenario.

E. Proof of Corollary 4

Let δ
(d)
k (n, α) denote the phase transition width of k-

connectivity in d-dimensional space as we want to emphasize
the dependence of δk(n, α) on d. We assume that n is large
enough such that the small order part o(1) in Eq. 9 can be
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ignored. Then, for any fixed n, k and d, we have

δ
(d)
k (n, α) ≈

log
(

log α
log(1−α)

)

d (πdn)
1
d (F (n, k))

d−1
d

= log
(

log α

log(1− α)

)
· 1

d (πdn)
1
d (F (n, k))

d−1
d

= T (α) · Y (n, k, d).

It is obvious that for any fixed n, k and d, the term
Y (n, k, d) is fixed. In addition, the term Y (n, k, d) is inde-
pendent of α. Therefore, the value of Y (n, k, d) does not
change as α varies given that n, k and d are fixed. If we
know δ

(d)
k (n, α) for any α ∈ (0, 1

2 ), we can derive the value
of Y (n, k, d), which leads us to derive δ

(d)
k (n, α) for any other

α ∈ (0, 1
2 ) with n, k and d fixed. The proof of Corollary 4 is

complete.
As an example, Fig. 8 shows the dependence of the phase

transition width of k-connectivity on α in d-dimensional space
(d = 1, 2, 3). These analytical results are calculated from Eq.
9, and the small order part o(1) in (1 + o(1)) is omitted. We
can see that the variation of δ

(d)
k (n, α) with α has the same

functional dependence irrespective of n, k and d, save for a
scaling constant defined by these latter variables.
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Fig. 8. Analytical results for the phase transition width of k-connectivity
versus α in d-dimensional space d = 1, 2, 3.

F. Proof of Theorem 2

For d = 2, 3, ignore the boundary effect, the average node
degree is nπdr

d(n). In the same way as shown in the proof
of Theorem 1 and Corollary 1, we can readily obtain result
given in Eq. 11 for d = 2, 3.

For d = 1, the average node degree is 2nr(n). Again, using
the same method as shown in the proof of Theorem 1 and
Corollary 1, the result follows.

VI. SIMULATIONS

We have theoretically investigated the phase transition width
of k-connectivity δk(n, α) for any positive integer k and for

large n in d-dimensional space (d = 1, 2, 3) in Sections IV
and V. In this section, we conduct simulations to verify our
theoretical analysis.

A. Simulation deployment

In the simulations, we consider that a total of n nodes are
randomly and independently distributed in a unit cube [0, 1]d

(d = 1, 2, 3) according to a uniform distribution. All the nodes
have the same transmission range r(n). We programmed a
tool in C++ for computing the phase transition width of k-
connectivity δk(n, α) for k = 1, 2, 3. Simulations become very
computationally intensive and time consuming for k > 3 and
large values of n. Therefore we limited k to 3 and n to 1500
in the simulations.

B. Computing the phase transition width δk(n, α)

Here we give a brief description of the determination
of the phase transition width of k-connectivity δk(n, α) in
simulations. The following are the main steps:

1) For any given n, distribute n nodes randomly and inde-
pendently in a unit cube [0, 1]d (d = 1, 2, 3) following a
uniform distribution. Then we obtain a network topology
Γi (i = 1, 2, 3, ...). For this network topology Γi and
each k ∈ {1, 2, 3}, find the corresponding minimum
transmission range rk(i) which makes the network k-
connected.

2) Repeat step 1) for a large number of times N (e.g.,
N = 10000), then we obtain a set of N random
topologies {Γi, i = 1, 2, 3, ..., N}, and three sets of N
corresponding minimum transmission ranges {rk(i), i =
1, 2, 3, ..., N} for k = 1, 2 and 3 respectively, where
each set contains N transmission range values.

3) Reorder each set of the N transmission ranges (i.e.,
{rk(i), i = 1, 2, 3, ..., N} for k = 1 or 2 or 3) in an
ascending order, such that r′k(i) ≤ r′k(i + 1) in the new
ordered sets for all i ∈ [1, N − 1].

4) For each k ∈ {1, 2, 3}, let j = dN × αe and
l = dN × (1 − α)e. Then the j-th (respectively, l-
th) item r′k(j) (respectively, r′k(l)) in the new ordered
set is approximately the minimum transmission range
at which the network is k-connected with probability α
(respectively, (1 − α)). Finally, the difference between
these two transmission ranges δ̃k(n, α) = r′k(l)− r′k(j)
is approximately the phase transition width over the
probability interval [α, 1 − α] of k-connectivity. The
larger N is, the more accurate the computed phase
transition width is. However, a large N will cost a large
amount of time.

5) Repeat steps 1) to 4) for different values of n to obtain
the phase transition width of k-connectivity for different
values of n.

C. Eliminating the boundary effect

An important aspect in the simulation is to eliminate the
boundary effect. As we know, the simulation is performed
in a bounded area (e.g., unit cube [0, 1]d), nodes located at
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the edges and borders of the network area only have links
toward the middle of the network area. Hence, their average
node degree is lower than that of the nodes located in the
middle of the network area. Since the analytical results are
derived without considering the boundary effect, the boundary
effect in the simulation will make it impossible to compare the
simulation results with the analytical results.

Usually, there are two ways to avoid the boundary effect.
The first one is to divide the entire simulation area into two
disjoint subareas [37], [39]: a boundary subarea Zout with
a width of at least r(n), and an inner subarea Zin. Fig. 9
shows two examples for 2-dimensional networks. Only nodes

r(n)


out
Z


in
Z


r(n)


out
Z

in
Z


unit square
 unit circle


Fig. 9. An illustration of the first method for avoiding the boundary effect in
2-dimensional network area. Only nodes located in subarea Zin are counted
for the statistics in the simulation.

that are located in the inner subarea Zin are counted for the
statistics of the simulations. In fact, the nodes in the boundary
subarea Zout can be used as relay nodes for building links
with the nodes located in the inner subarea Zin, but they are
not counted for the statistics. One of the disadvantages of this
technique is that the number of nodes located in the inner
subarea Zin decreases as r(n) increases when the size of the
network area is fixed [3].

The second approach to avoid the boundary effect is to use
the toroidal distance metric [3], [40]. The principle of this
technique is to model the network in such a way that nodes
at the border are allowed to have links to the nodes at the
opposite border. For example, nodes at the right border can
have links to the nodes at the left border, and in the same
way, nodes at the bottom border can have links to the nodes
at the top border. In such a way, each node has the same
average node degree and the boundary effect is eliminated. In
this paper, we use the second method, i.e., toroidal distance
metric, to avoid the boundary effect in simulations.

D. Simulation results

Fig. 10 shows the analytical results and the simulation
results for the phase transition width of 1-connectivity δ1(n, α)
in d-dimensional space d = 1, 2, 3. The value of n is varied
between 100 and 1500, α is set two typical values, i.e., 0.4
(close to 0.5) and 0.05 (close to 0). For the analytical results,
the boundary effect is ignored; when calculating the analytical
results by Eq. 9, the small order part is omitted, i.e., o(1) in
the term (1 + o(1)) is ignored. For the simulation results, the

boundary effect is eliminated by using the toroidal distance
metric in order to have a fair comparison with the analytical
results. We can see that for each d ∈ {1, 2, 3}, the phase
transition width of 1-connectivity decreases as n grows. It
is obvious that there is significant discrepancy between the
analytical results and the simulation results for small values
of n (e.g., n < 200). This is because the small order part
o(1) in the analytical results is significant when n is small,
especially when n is comparable with k!. However, the small
order part o(1) goes to zero as n goes to infinity. So the
discrepancy decreases as n increases. We can see that although
there is significant discrepancy when n is not large enough,
the simulation results have the same decreasing property as
the analytical results. We can also see that the phase transition
width of 1-connectivity is larger for d = 3 than that for d = 2,
and similarly, the phase transition width is larger for d = 2
than that for d = 1, which verifies Corollary 3. This means
that in a higher dimensional network, more transmission power
is needed in order to make the probability that the network is
k-connected transit from almost zero to almost one.

Fig. 11 shows the analytical results and the simulation re-
sults for the phase transition width of k-connectivity δk(n, α)
(k = 1, 2, 3) in 2-dimensional space. Other settings are the
same as in Fig. 10. We can see that when d = 2, the phase
transition width of k-connectivity decreases as n increases.
The figure also indicates that the difference between δk(n, α)
and δk+1(n, α) becomes smaller as n gets larger. It means that
δk(n, α) ≈ δk+1(n, α) when n is large enough, which is con-
sistent with Corollary 2. In other words, the energy required
for making the probability that the network is k-connected
increase from almost zero to almost one is approximately the
same as the energy required for making the probability that
the network is (k+1)-connected increase from almost zero to
almost one.

Fig. 12 shows the dependence of the phase transition width
of k-connectivity on α given that n, k and d are fixed.
We can see that the variation of δk(n, α) with α has the
same functional dependence irrespective of n, k and d. This
verifies Corollary 4. We can also see that for fixed n, k
and d, δk(n, α) decreases as α increases. In addition, the
discrepancy between the analytical results and the simulation
results becomes significant when α is very small. The reason
for this is that the small order part o(1) in the analytical results
becomes significant when α is very close to zero.

Simulation results also suggested that in order to achieve
a good accuracy, n should be larger than 200 when k = 1
and d = 1; and n should be larger than 600 when k ≤ 3 and
d = 2, 3.

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the phase transition behavior
of k-connectivity with respect to the transmission range of
nodes in wireless multi-hop networks, where n nodes are
randomly and uniformly distributed in a unit cube [0, 1]d, and
each node has a uniform transmission range r(n). The phase
transition behavior is associated with the transmission range,
thus the transmission power of nodes. It is desirable to control
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Fig. 10. Phase transition width of 1-connectivity versus the number of nodes n in d-dimensional space d = 1, 2, 3. The value of α is fixed in each scenario.
For the analytical results, the boundary effect is ignored; for the simulation results, the boundary effect is eliminated by using the toroidal distance metric.
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Fig. 11. Phase transition width of k-connectivity (k = 1, 2, 3) versus the number of nodes n in 2-dimensional space. The value of α is fixed in each
scenario. For the analytical results, the boundary effect is ignored; for the simulation results, the boundary effect is eliminated by using the toroidal distance
metric.

the transmission range to be just above the right boundary
of the phase transition region so that the network achieves
k-connectivity with a high probability while minimizing the
energy utilization. For large n, we derived a generic analyt-
ical formula for calculating the phase transition width of k-
connectivity for any fixed positive integer k in d-dimensional
space (d = 1, 2, 3). We also derived an analytical formula
for a modified version of the phase transition width in terms
of the average node degree. To the best of our knowledge,
our generic results have never been presented before. We also
conduct simulations to verify our theoretical analysis. Our
results were derived for large enough n, hence, they holds
only when n is sufficiently large. When n is a small number
(especially when n is comparable with k!), our results do not
hold any more. Simulation results showed that n should be
larger 200 when k = 1 and d = 1; and n should be larger
than 600 when k ≤ 3 and d = 2, 3. Our result also applies

to mobile networks where nodes always move randomly and
independently. These results are of practical value in the self-
configuration of wireless multi-hop networks, and provide us
useful design principles for wireless multi-hop networks as
well.

In the theoretical analysis, we have ignored the boundary
effect, which cannot be done in the real world. Hence, in the
future, we will further investigate the phase transition width of
k-connectivity considering the boundary effect. Furthermore,
our theoretical results are derived for large n; sometimes, one
will be also interested in the results for small values of n
which may be encountered in real applications. Therefore,
to investigate this problem for small values of n is another
possible future work. We may also investigate the character-
ization of the phase transition width considering some more
realistic channel models, e.g., considering shadowing [41] and
interference [42].
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results, the boundary effect is ignored; for the simulation results, the boundary effect is eliminated by using the toroidal distance metric.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments which have resulted in a significant
improvement for the paper.

REFERENCES

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Communications Magazine, pp. 102–114,
August, 2002.

[2] R. Hekmat and P. V. Mieghem, “Connectivity in Wireless Ad-hoc
Networks with a Log-normal Radio Model,” Mobile Networks and
Applications, vol. 11, no. 3, pp. 351–360, June, 2006.

[3] C. Bettstetter, “On the Minimum Node Degree and Connectivity of a
Wireless Multihop Network,” in 3rd ACM International Symposium on
Mobile Ad Hoc Networking and Computing, Lausanne, 2002, pp. 80–91.

[4] V. Ravelomanana, “Extremal Properties of Three-Dimensional Sensor
Networks with Applications,” IEEE Transactions on Mobile Computing,
vol. 3, no. 4, pp. 246–257, July, 2004.

[5] A. Tang, C. Florens, and S. H. Low, “An Empirical Study on the
Connectivity of Ad Hoc Networks,” in IEEE Aerospace Conference,
vol. 3, March, 2003, pp. 1333–1338.

[6] J. Aspnes, T. Eren, D. K. Goldenberg, A. S. Morse, W. Whiteley, Y. R.
Yang, B. D. O. Anderson, and P. N. Belhumeur, “A Theory of Network
Localization,” IEEE Transactions on Mobile Computing, vol. 5, no. 12,
pp. 1663–1678, December, 2006.

[7] B. D. O. Anderson, P. N. Belhumeur, T. Eren, D. K. Goldenberg,
and A. S. Morse, “Graphical Properties of Easily Localizable Sensor
Networks,” Wireless Networks, 2007.

[8] O. Younis, S. Fahmy, and P. Santi, “An Architecture for Robust Sensor
Network Communications ,” International Journal of Distributed Sensor
Networks, vol. 1, no. 3 and 4, pp. 305–327, July, 2005.

[9] M. Bahramgiri, M. T. Hajiaghayi, and V. S. Mirrokni, “Fault-tolerant and
3-Dimensional Distributed Topology Control Algorighms in Wireless
Multi-hop Networks,” in IEEE Int. Conf. on Computer Communications
and Networks (ICCCN), 2002, pp. 392–397.

[10] X.-Y. Li, P.-J. Wan, Y. Wang, and C.-W. Yi, “Fault Tolerant Deployment
and Topology Control in Wireless Networks,” in 4th ACM international
symposium on Mobile ad hoc networking and computing (MobiHoc),
Maryland, USA, June, 2003, pp. 117–128.

[11] B. Krishnamachari, S. B. Wicker, and R. Bejar, “Phase transition
phenomena in wireless ad hoc networks,” in IEEE Globecom, vol. 5,
2001, pp. 2921–2925.

[12] G. Han and A. M. Makowski, “Poisson convergence can yield very sharp
transitions in geometric random graphs,” in the Inaugural Workshop,
Information Theory and Applications, San Diego (CA), February, 2006.

[13] B. Krishnamachari, S. Wicker, R. Bejar, and C. Fernandez, “On the
Complexity of Distributed Self-Configuration in Wireless Networks,”
Telecommunication Systems, vol. 22, no. 1-4, pp. 33–59, 2003.

[14] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE
Transactions on Information Theory, vol. 46, no. 2, pp. 388–404, 2000.

[15] ——, “Critical power for asymptotic connectivity in wireless networks,”
Stochastic Analysis, Control, Optimization and Applications, pp. 547–
566, 1998.

[16] P.-J. Wan and C.-W. Yi, “Asymptotic Critical Transmission Radius
and Critical Neighbor Number for k-connectivity in Wireless Ad Hoc
Networks,” in MobiHoc, Roppongi, Japan, May, 2004, pp. 1–8.

[17] X. Ta, G. Mao, and B. D. O. Anderson, “Evaluation of the Probability
of K-hop Connection in Homogeneous Wireless Sensor Networks,” in
to appear in IEEE Globecom, Washington DC, USA, 2007.

[18] M. Penrose, “On k-connectivity for a geometric random graph,” Random
Structures and Algorithms, no. 15, pp. 145–164, 1999.

[19] M. Desai and D. Manjunath, “On the Connectivity in Finite Ad Hoc
Networks,” IEEE Communications Letters, vol. 6, no. 10, pp. 437–439,
October, 2002.

[20] C. H. Foh and B. S. Lee, “A closed form network connectivity formula
for one-dimensional MANETs,” in IEEE International Conference on
Communications (ICC), vol. 6, Paris, France, June, 2004, pp. 3739–
3742.

[21] G. Korniss, C. J. White, P. A. Rikvold, and M. A. Novotny, “Dynamic
Phase Transition, Universality, and Finite-size Scaling in the Two-
dimensional Kinetic Ising Model in an Oscillating Field,,” Physical
Review E, vol. 63, p. 016120 (15), 2001.

[22] R. Cerf and E. N. M. Cirillo, “Finite Size Scaling in Three-Dimensional
Bootstrap Percolation,” The Annals of Probability, vol. 27, no. 4, pp.
1837–1850, 1999.

[23] M. Penrose, Random Geometric Graphs, 1st ed. Oxford: Oxford
University Press, 2003.

[24] P. Hall, Introduction to the Theory of Coverage Processes. Boston:
Birkhauser, 1988.

[25] C. Bettstetter, “On the Connectivity of Ad Hoc Networks,” The Com-
puter Journal, vol. 47, no. 4, pp. 432–447, 2004.

[26] A. Nain, D. Towsley, B. Liu, and Z. Liu, “Properties of random direction
models,” in Infomcom 2005, vol. 3, INRIA, France, March, 2005, pp.
1897–1907.

[27] B. Bollobas, Random Graphs. Academic Press, 1985.
[28] E. Friedgut and G. Kalai, “Every monotone graph property has a sharp

threshold,” in the American Mathematical Society, vol. 124, 1996, pp.
2993–3002.

[29] U. N. Raghavan, H. P. Thadakamalla, and S. Kumara, “Phase Transition
and Connectivity in Distributed Wireless Sensor Networks,” in 13th
International Conference on Advanced Computing and Communications,
Coimbatore, India, December, 2005.

[30] A. Goel, S. Rai, and B. Krishnamachari, “Sharp Threshold For



14

Monothone Properties In Random Geometric Graphs,” in STOC’04,
Chicago, June, 2004.

[31] X. Ta, G. Mao, and B. D. O. Anderson, “On the Probability of K-
hop Connection in Wireless Sensor Networks,” IEEE Communications
Letters, vol. 11, no. 8, pp. 662–664, August, 2007.

[32] S. Janson, T. Luczak, and A. Rucinski, Random Graphs, 1st ed. New
York: John Wiley and Sons, 2000.

[33] F. Buckley and M. Lewinter, A Friendly Introduction to Graph Theory,
1st ed. New Jersey: Pearson Education, Inc, 2003.

[34] N. G. D. Bruijn, Asymptotic Methods in Analysis, 2nd ed. New York:
Dover Publications, Inc., 1981.

[35] P. Santi and D. M. Blough, “The Critical Transimitting Range for
Connectivity in Sparse Wireless Ad Hoc Networks,” IEEE Transactions
on Mobile Computing, vol. 2, no. 1, pp. 25–39, 2003.

[36] B. Jackson and T. Jordan, “Connected Rigidity Matroids and Unique
realizations of Graphs,” Journal of Combinatorial Theory B, vol. 94,
pp. 1–29, 2005.

[37] C. Bettstetter and J. Zangl, “How to achieve a connected ad hoc network
with homogeneous range asignment: an analytical study with consider-
ation of border effects,” in Proc. 4th IEEE International Conference on
MWCN, 2002, pp. 125–129.

[38] E. Godehardt and J. Jaworski, “On the Connectivity of a Random
Interval Graph,” Random Structures and Algorithms, vol. 9, no. 1 and
2, pp. 137–161, 1996.

[39] C. Bettstetter and O. Krause, “On border effects in modeling and
simulation of wireless ad hoc networks,” in IEEE Intern. Conf. on Mobile
and Wireless Comm. Netw. (MWCN), Recife, Brazil, August, 2001, pp.
20–27.

[40] N. A. C. Cressie, Statistics for Spatial Data. John Wiley and Sons,
1991.

[41] C. Bettstetter and C. Hartmann, “Connectivity of Wireless Multihop
Networks in a Shadow Fading Environment,” Wireless Networks, vol. 11,
no. 5, pp. 571–579, September, 2005.

[42] O. Dousse, F. Baccelli, and P. Thiran, “Impact of interferences on
connectivity in ad hoc networks,” in IEEE Infocom, San Francisco, USA,
April, 2003, pp. 1724–1733.


