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Abstract—Coprime arrays can achieve an increased number
of degrees-of-freedom by deriving the equivalent signals of a
virtual array. However, most existing methods fail to utilize
all information received by the coprime array due to the non-
uniformity of the derived virtual array, resulting in an inevitable
estimation performance loss. To address this issue, we propose
a novel virtual array interpolation-based algorithm for coprime
array direction-of-arrival (DOA) estimation in this paper. The
idea of array interpolation is employed to construct a virtual
uniform linear array such that all virtual sensors in the non-
uniform virtual array can be utilized, based on which the atomic
norm of the second-order virtual array signals is defined. By
investigating the properties of virtual domain atomic norm, it
is proved that the covariance matrix of the interpolated virtual
array is related to the virtual measurements under the Hermitian
positive semi-definite Toeplitz condition. Accordingly, an atomic
norm minimization problem with respect to the equivalent virtual
measurement vector is formulated to reconstruct the interpolated
virtual array covariance matrix in a gridless manner, where the
reconstructed covariance matrix enables off-grid DOA estima-
tion. Simulation results demonstrate the performance advantages
of the proposed DOA estimation algorithm for coprime arrays.

Index Terms—Atomic norm, coprime array, direction-of-
arrival estimation, gridless Toeplitz matrix reconstruction, virtual
array interpolation.

I. INTRODUCTION

D IRECTION-OF-ARRIVAL (DOA) estimation is a funda-
mental problem in array signal processing applications

including radar, sonar, acoustics, speech, and wireless commu-
nications [2–7]. According to the Nyquist sampling theorem,
uniform linear array (ULA) is the most commonly adopted
array geometry for DOA estimation due to its regular structure
and well-developed techniques. Recently, the systematically
designed sparse arrays including coprime arrays and nested
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arrays have attracted noticeable attention, owing to their
superior performance to the ULA’s [8, 9]. In particular, the
sparse arrays provide a larger array aperture than the ULA
with the same number of sensors to improve the resolution.
More importantly, the sparse arrays enable to break through
the limitation of the degrees-of-freedom (DOFs). For instance,
the coprime array can resolve up to O(MN) sources with only
M +N − 1 physical sensors. Motivated by these advantages,
a series of efforts have been made to exploit the coprime
array for DOA estimation [10], adaptive beamforming [11],
and spectrum sensing [12].

In order to exploit the DOF superiority offered by the
coprime array, an augmented virtual array can be constructed
by computing the difference co-array of the coprime array, and
its equivalent virtual array signal statistics can be implemented
to perform DOA estimation [13–18]. Since the derived virtual
array contains more virtual sensors, the limitation in DOFs
constrained by the number of physical sensors is overcome.
Among the virtual array-based methods, the spatial smoothing
technique [17] is the most popular one, which requires a
ULA-based signal model for DOA estimation. Unlike the
nested arrays or the minimum redundancy arrays that yield
a contiguous virtual array structure, the difference co-arrays
derived from coprime arrays usually have holes, indicating that
a coprime array is, in general, a partially augmentable array
[19]. Hence, it is difficult to operate the derived signal statistics
corresponding to the non-uniform virtual array. To address this
issue, a common solution is to extract the maximum contigu-
ous part from the non-uniform virtual array to form a virtual
ULA. However, the virtual ULA generated in such a way is at
the expense of reducing the achievable DOFs and virtual array
aperture, since the discontiguous virtual sensors are discarded
and, as a result, the information contained in the virtual array
is not fully utilized. Although the generalized coprime array
configurations [20, 21] and the coprime planar arrays [22]
enable further expansion of the number of contiguous virtual
sensors, the estimation performance loss is inevitable because
the discontiguous virtual sensors are discarded.

To avoid the estimation performance loss, the sparse signal
reconstruction algorithm [15] exploits all the non-uniform
virtual array signals for DOA estimation, where the sparsity of
the sources is considered. However, since all the equivalent vir-
tual signals vectorized from the sample covariance matrix are
included, the repeated virtual sensors lead to a high computa-
tional cost. In addition, the sparse signal reconstruction is for-
mulated as a basis pursuit denoising problem, where the pre-
defined sampling grids with a specific sampling interval results
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in an inherent basis mismatch for DOA estimation. In order
to make a full use of the non-uniform virtual array signals, a
high-resolution DOA estimation algorithm is proposed in [23]
by utilizing multiple frequencies to fill the missing elements in
the difference co-array, permitting the exploitation of the full
DOFs offered by the derived non-uniform virtual array. More
recently, a gridless DOA estimation algorithm is proposed
by interpolating the coprime co-array through nuclear norm
minimization [24], based on which the minimum number of
virtual sensors required to complete the interpolated virtual
array covariance matrix is reported in [25]. Although the
abovementioned nuclear norm minimization-based algorithms
are regularization-free, the retrieval of the covariance matrix is
based on the matrix completion principle, indicating that the
virtual signals corresponding to the non-uniform virtual array
remain unchanged in the optimized covariance matrix. Since
the virtual signals are obtained from the sample covariance
matrix, the deviation caused by the finite snapshots may affect
the estimation accuracy of the completed covariance matrix.
The positive semi-definite (PSD) structure of the covariance
matrix is introduced in [26] for the design of an interpolated
covariance matrix using a nuclear norm, where a unified
framework for analyzing the co-array extrapolation error is
presented.

On the other hand, there has been an increasing interest
in utilizing the Toeplitz structure of a ULA-based covariance
matrix for both physical array-based and virtual array-based
DOA estimation [27–31]. A regularization-free approach for
matrix recovery from compressed sketches is based on the
Toeplitz structure and the low-rank property [27], where the
stability of the Toeplitz matrix estimation is investigated in
terms of both denoising and prediction aspects. The gridless
DOA estimation is implemented by reconstructing a low-
rank Toeplitz covariance matrix of the signals received at
a physical array [28], which offers a more accurate es-
timation performance than the non-Toeplitz approaches. In
addition, the maximum-likelihood estimation of the Toeplitz-
structured co-array covariance matrix is proposed for localiz-
ing more sources than sensors [29]. Apparently, the determin-
istic Toeplitz structure and the related statistical characteristics
provide a more accurate approximation for covariance matrix
estimation, promoting the feasibility of matrix recovery as well
as improving the estimation performance.

In this paper, we propose a novel virtual array interpolation-
based DOA estimation algorithm. By reconstructing the co-
variance matrix of the interpolated virtual array, all the derived
virtual sensors are efficiently utilized. Specifically, we first
interpolate the non-uniform virtual array to be a uniform
one by filling in additional nominal sensors, such that all
the virtual sensors in the derived virtual array can be fully
utilized for DOA estimation. Then, we define the atomic norm
of the interpolated virtual array signals based on an ideal
assumption. Different from the atomic norm of the physical
array received signals [32–34], the derived equivalent virtual
array signals belong to the second-order statistics, which
means that only the real-valued signal power is available rather
than the complex-valued signal waveforms. Thus, we divide
the equivalent virtual signals into multiple virtual measure-

ments, and represent them by atoms through incorporating the
phase offsets among virtual measurements. By investigating
the properties of the defined atomic norm, the covariance
matrix of the interpolated virtual array is proved to follow
a Hermitian PSD Toeplitz structure, and its relationship with
the equivalent virtual signals is further established. In practice,
with the partial correlation observations as the reference, an
atomic norm minimization problem is formulated to seek
the atomic decomposition of interpolated virtual array signals
with the minimal number of atoms for the reconstruction of
the Toeplitz covariance matrix in a gridless manner, and the
reconstructed covariance matrix is capable of estimating off-
grid DOAs. Simulation results demonstrate the superiorities
of the proposed DOA estimation algorithm in terms of resolu-
tion, estimation accuracy, achievable DOFs, and computational
complexity.

The main contributions of this paper can be summarized as
follows:

• We define the atomic norm of the second-order virtual
signals corresponding to an interpolated virtual ULA,
which contains all the virtual sensors in the derived non-
uniform virtual array.

• We relate the virtual signals to the Toeplitz covariance
matrix of the interpolated virtual array according to the
properties of the proposed atomic norm, and transform
the atomic norm minimization problem to the selection
of a virtual measurement vector.

• We reconstruct a Hermitian PSD Toeplitz covariance
matrix corresponding to the interpolated virtual array in a
gridless manner, and provide the theoretical performance
analyses.

The rest of this paper is organized as follows. In Section II,
we present the coprime array signal model. We then propose
a virtual array interpolation-based DOA estimation algorithm
in Section III, and present theoretical analysis in Section IV.
We demonstrate the simulation results in Section V. Finally,
we make our conclusions in Section VI.

Notations: We use lower-case and upper-case boldface char-
acters to respectively represent vectors and matrices through-
out this paper. The superscripts ( · )T, ( · )H, and ( · )∗ denote
the transpose, conjugate transpose, and complex conjugation,
respectively. ( · )−1, Tr( · ), and rank( · ) respectively denote
the inverse, the trace, and the rank of a matrix. The notation
E[ · ] denotes the statistical expectation, vec( · ) stands for the
vectorization operator that sequentially stacks each column of
a matrix, and diag( · ) represents a diagonal matrix with the
corresponding elements on its diagonal. ⊗ and ◦ denote the
Kronecker product and the Hadamard product, respectively.
The curled inequality symbol ≽ denotes matrix inequality.
∥ · ∥2 and ∥ · ∥F denote the Euclidean norm and Frobenius
norm, respectively. |S| represents the cardinality of a set S. For
a given vector a, ⟨a⟩ℓ stands for the ℓ-th element in a. Finally,
I denotes the identity matrix with an appropriate dimension.

II. COPRIME ARRAY SIGNAL MODEL

Consider a pair of sparse ULAs as shown in Fig. 1(a), where
the top sparse ULA consists of M sensors spaced Nd apart,
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(a)

(b)

Fig. 1. Illustration of a coprime array. (a) A coprime pair of sparse ULAs;
(b) Coprime array configuration.

whereas the bottom one consists of N sensors spaced Md
apart. Here, M and N are coprime integers, and d is a half-
wavelength, i.e., d = λ/2. Aligning these two sparse ULAs
with the first sensor as the reference yields a coprime array
configuration as shown in Fig. 1(b). Due to the coprimality,
the sensors do not overlap except the reference one; hence,
the coprime array consists of M +N − 1 sensors in total.

Assuming K far-field, narrowband and uncorrelated sources
impinging from directions θ = [θ1, θ2, · · · , θK ]T, the received
signals of the coprime array can be modeled as

x(t) =

K∑
k=1

a(θk)sk(t) + n(t) = As(t) + n(t), (1)

where A = [a(θ1),a(θ2), · · · ,a(θK)] ∈ C(M+N−1)×K

denotes the coprime array steering matrix, s(t) =
[s1(t), s2(t), · · · , sK(t)]T denotes the signal waveform vector,
and n(t) ∼ CN (0, σ2

nI) represents the independent and iden-
tically distributed (i.i.d.) zero-mean additive white Gaussian
noise vector. Here, σ2

n denotes the noise power. The k-th
column of A represents the steering vector of the k-th source
signal as

a(θk)=
[
1, e−j 2π

λ u2d sin(θk), · · ·, e−j 2π
λ uM+N−1d sin(θk)

]T
, (2)

where uld, l ∈ {2, 3, · · · ,M +N − 1}, denotes the position
of the l-th sensor in the coprime array, and j =

√
−1 is the

imaginary unit.
The covariance matrix of the coprime array received signals

x(t) can be expressed as

Rx = E
[
x(t)xH(t)

]
=

K∑
k=1

pka(θk)a
H(θk) + σ2

nI, (3)

where pk denotes the power of the k-th source signal. Con-
sidering the fact that the exact covariance matrix Rx is
unavailable in practice, it can be approximated by its sample
version

R̂x =
1

T

T∑
t=1

x(t)xH(t), (4)

where T denotes the number of snapshots. Here, the sample
covariance matrix R̂x is the maximum-likelihood estimator
of Rx, and it will converges to Rx when T trends to infinity
under the stationarity and ergodicity assumptions [35].

III. VIRTUAL ARRAY INTERPOLATION-BASED
DOA ESTIMATION ALGORITHM

In this section, we elaborate a novel virtual array
interpolation-based DOA estimation algorithm. First, the de-
rived non-uniform virtual array is transformed to a virtual
ULA through array interpolation. The atomic norm of multiple
virtual measurements is then investigated based on an ideal
assumption, from which the relationship between the second-
order equivalent virtual signals and the covariance matrix of
the interpolated virtual array is established. Finally, based
on the partial correlation observations corresponding to the
derived non-uniform virtual array, we formulate an atomic
norm minimization problem for Toeplitz covariance matrix
reconstruction, which enables to estimate off-grid DOAs with
the utilization of the entire information contained in the
derived non-uniform virtual array.

A. Array Interpolation for Virtual ULA

Sparse arrays such as a coprime array enable an increased
number of DOFs by handling the equivalent virtual array
signals. By vectorizing the covariance matrix Rx, we have
the equivalent virtual array signals as

yv = vec(Rx) = Avp+ σ2
ni, (5)

where Av =
[
a∗(θ1)⊗a(θ1),a

∗(θ2)⊗a(θ2), · · · ,a∗(θK)⊗
a(θK)

]
∈ C(M+N−1)2×K , p = [p1, p2, · · · , pK ]T, and

i = vec(I). Here, the steering matrix Av corresponds to an
augmented array with the virtual sensors located at Sd, where

S = {um − un|m,n = 0, 1, · · · ,M +N − 1} . (6)

By removing the repeated elements in S, a proper subset SV (
S is obtained, and the virtual sensors located at SVd constitute
a virtual array. For the systematic coprime array configuration
shown in Fig. 1(b), the elements in SV can also be obtained
by picking all the unique values from its difference co-array
as

SV ( {±(Mn−Nm)|m = 0, 1, · · · ,M − 1,

n = 0, 1, · · · , N − 1}. (7)

Accordingly, the equivalent virtual signals of the derived vir-
tual array SV can be obtained by selecting the corresponding
elements from yv as

ȳv = Āvp+ σ2
nī, (8)

where Āv ∈ C|SV |×K denotes the steering matrix of the
derived virtual array SV , and ī denotes a sub-vector of i
corresponding to the selected positions of the virtual sensors
of SV in S.

Since the coprime array is a partially augmentable ar-
ray, its difference co-array contains several missing ele-
ments, which are referred to as holes [8, 19], leading to
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Fig. 2. Illustration of various array representations with an example of M = 3 and N = 5. (a) Coprime array; (b) SV , virtual array derived from the
difference co-array of the coprime array; (c) SC , contiguous part of the virtual array; (d) SI , interpolated virtual array.

a non-uniform virtual array geometry. To have an intu-
itive understanding, we illustrate a coprime array config-
uration with M = 3 and N = 5 in Fig. 2(a). Obvi-
ously, we have the derived non-uniform virtual array SV =
{−12,−10,−9,−7,−6,−5, · · · , 5, 6, 7, 9, 10, 12} as depicted
in Fig. 2(b), where the missing elements {−11,−8, 8, 11} are
the holes. Since the non-uniformity results in difficulties in the
subsequent statistical signal processing, a common solution is
to pick up the maximum contiguous part SC from SV while
discarding the discontiguous part SV −SC [13, 17]. Although
the obtained virtual ULA SC as shown in Fig. 2(c) is easy
to operate, part of the information received by the coprime
array is apparently ignored due to the discarded discontiguous
virtual sensors, resulting in the performance degradation.

In order to make full use of the information involved in the
non-uniform virtual array SV , we introduce the idea of array
interpolation to fill in the holes in SV with nominal sensors.
As such, a virtual ULA SI with 2M(N − 1) + 1 sensors
is constructed as shown in Fig. 2(d), where all the virtual
sensors in SV are included. Here, the nominal sensor contains
two meanings: First, the array interpolation is implemented
in the virtual domain, and the nominal sensors exist in a
mathematical sense rather than in a physical existence; Second,
based on the fact that there is no a priori information regarding
the equivalent virtual signals corresponding to the holes, we
may naturally regard the interpolated nominal sensors as
the nonfunctional sensors and set the corresponding virtual
signals in these positions to zero. Hence, the |SI |-dimensional
interpolated virtual array signals yI can be initialized as

[yI ]i =

{
[ȳv]i , i ∈ SV ,

0, i ∈ SI − SV ,
(9)

where [ · ]i denotes the virtual signal of the virtual sensor
at position id. Clearly, there are two kinds of sensors in
the interpolated virtual array SI , namely, virtual sensors and
nominal sensors. The virtual signals in yI corresponding to
the derived virtual sensors in the non-uniform virtual array are
consistent with those in ȳv , whereas the remaining elements

corresponding to the nominal sensors are zero. The de facto
ULA-based virtual signals yI enable the potential utilization
of the mature DOA estimation techniques designed for the
ULA with all the information contained in ȳv . Therefore, we
prefer to perform DOA estimation using the equivalent signals
of the interpolated virtual array SI rather than using those
of the contiguous virtual array SC as mentioned earlier. To
effectively utilize the interpolated virtual ULA, it is necessary
to retrieve the unknown virtual signals corresponding to the
interpolated nominal sensors, which are represented as zeros
in the initialization of virtual array interpolation (9).

B. Atomic Norm of Multiple Virtual Measurements

In order to overcome the basis mismatch problem, the grid-
less methods provide a novel insight for statistical signal pro-
cessing, where the atomic norm is one of the most important
mathematical tools to utilize the signal characteristics without
pre-defined sampling grids. The analysis for the atomic norm
in the virtual domain begins with an ideal scenario assumption,
where the interpolated virtual array signals are assumed to be
accurate. More specifically, the number of available snapshots
for calculating the sample covariance matrix trends to infinity,
and the coprime array received signals are noise-free. Besides,
the virtual signals of the interpolated nominal sensors in SI
are assumed to be precise rather than to be zeros as we did in
(9). Similar to (5), the ideal virtual signals of the interpolated
virtual array SI can be modeled as

y =

K∑
k=1

v(θk)pk = V p, (10)

where V = [v(θ1),v(θ2), · · · ,v(θK)] ∈ C|SI |×K denotes the
steering matrix of the interpolated virtual array SI . Although
the interpolated virtual array signal y modeled in (10) has a
similar structure as the coprime array received signals x(t) in
a noise-free case, y is actually a second-order statistics derived
from the correlation of the first-order coprime array received
signals. While y behaves like a single snapshot, the rank-



5

Fig. 3. Phase offsets among the virtual measurements of each sub-array.

deficiency problem of the corresponding correlation statistics
makes it difficult to identify multiple sources.

In view of this, we divide the interpolated virtual array
SI into L = (|SI |+ 1) /2 overlapping sub-arrays with L
contiguous virtual sensors for each sub-array as shown in Fig.
3. Since SI is symmetric to the zeroth position, the value of L
is always an integer. Accordingly, the equivalent virtual signals
of each sub-array can be obtained by dividing vector y into
L sub-vectors {y1,y2, · · · ,yL} as

yℓ =

K∑
k=1

vℓ(θk)pk = Vℓp, ℓ = 1, 2, · · · , L, (11)

where Vℓ = [vℓ(θ1),vℓ(θ2), · · · ,vℓ(θK)] ∈ CL×K . Here,

vℓ(θk) =
[
e−jπvL−ℓ+1 sin(θk), e−jπvL−ℓ+2 sin(θk), · · · ,

e−jπv2L−ℓ sin(θk)
]T

(12)

denotes the steering vector of the ℓ-th virtual sub-array corre-
sponding to the k-th signal, where vi denotes the i-th element
in SI . Collecting these L sub-vectors, Y = [y1,y2, · · · ,yL] ∈
CL×L yields the equivalent virtual signals of the interpolated
virtual sub-array in an L virtual measurements manner, and is
referred to as the virtual measurements in the sequel.

To analyze the atomic norm of Y , an atom with the same
dimension is required to represent Y . We would like to
emphasize the striking differences between the virtual domain
atoms and those in the physical domain [32–34]. On one hand,
for each source θk, the virtual signals yℓ formulated in (11)
belong to the second-order statistics, containing the real-valued
source power pk, unlike the first-order received signals x(t)
containing the complex-valued signal waveform sk(t). On the
other hand, for each virtual measurement, the displacement
among the L sub-arrays of the interpolated virtual array SI
creates the phase offsets, which can be utilized to characterize
the difference among the L sub-arrays in the virtual domain.
While Y contains the second-order virtual measurements
received by the sub-arrays as illustrated in Fig. 3, a series of
atoms can be formulated to represent Y based on the steering
vector of a certain sub-array and the phase offsets among the
L sub-arrays. In particular, we set the first sub-array of SI

shown in Fig. 3 as the reference virtual array, whose steering
vector can be calculated by setting ℓ = 1 in (12) as

r(θ) = v1(θ) =
[
e−jπvL sin(θ), e−jπvL+1 sin(θ), · · · ,

e−jπv2L−1 sin(θ)
]T

. (13)

Accordingly, the phase offsets between the L sub-arrays and
the reference virtual array can be expressed as

b(θ) =
[
1, e−jπ sin(θ), · · · , e−jπ(L−1) sin(θ)

]T
, (14)

and the steering vector of the ℓ-th sub-array can be represented
as

vℓ(θ) = r(θ)⟨bH(θ)⟩ℓ, ℓ = 1, 2, · · · , L. (15)

Therefore, the virtual measurements Y can be regarded as
L second-order virtual signal snapshots received by the ref-
erence virtual array, behaving like the snapshots of the first-
order signal waveforms. The phase offsets contained in b(θ)
characterize the difference among each virtual measurement.
As such, Y contains all the information in the interpolated
virtual array since all the elements in y are included.

Based on r(θ) and b(θ), an atom for representing Y can
be defined as

B(θ) = r(θ)bH(θ), (16)

where B(θ) ∈ CL×L with θ ∈ [−90◦, 90◦], and the corre-
sponding atom set is

A = {B(θ)| θ ∈ [−90◦, 90◦]} . (17)

With the specifically defined atom set A, the smallest number
of atoms for the representation of the virtual measurements Y
can be defined as

∥Y ∥A,0 = inf
K

{
Y =

K∑
k=1

pkB(θk), pk ≥ 0

}
, (18)

where inf denotes the infimum. While performing the atomic
decomposition of Y with the minimal number of atoms, i.e.,
minimizing (18), is an NP-hard problem, we introduce the
atomic norm convex relaxation as 1

∥Y ∥A = inf {h > 0 : Y ∈ h conv(A)}

= inf

{∑
k

pk

∣∣∣Y =
∑
k

pkB(θk), pk ≥ 0

}
, (19)

where conv(A) denotes the convex hull of the atom set A.
Further, we have the following theorem for the equivalent
representation of ∥Y ∥A:

Theorem 1: The atomic norm of the virtual measurements
Y defined in (19) can be represented in an equivalent semi-
definite programming (SDP) form as

∥Y ∥A = inf
z∈CL,W∈CL×L

{
1

2L
Tr (T (z)) +

1

2L
Tr(W )

∣∣∣∣[
T (z) Y
Y H W

]
≽ 0

}
, (20)

1Note that the atomic norm is formally defined as the gauge function of A
[36]. Since the atom set A for representing the multiple virtual measurements
Y is not centrally symmetric, our analysis is based on the underlying convex
geometry of conv(A), and ∥ · ∥A is referred to as the atomic norm of the
set A with an abuse of terminology [37].
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where T (z) denotes a Hermitian Toeplitz matrix with vector
z as its first column.

Proof: See Appendix A. �
Based on the atomic norm of the virtual measurements Y

defined in (19) and its equivalent SDP form in (20), we have
the following two corollaries regarding the properties of T (z),
whose conclusions can be utilized for the subsequent DOA
estimation.

Corollary 1: Denoting z⋆ as the optimum solution to (20),
the Hermitian PSD Toeplitz matrix T (z⋆) is the covariance
matrix of signals received by the reference virtual array, and
can be obtained from the principal square root of Y Y H.

Proof: According to (52), the Hermitian PSD Toeplitz
matrix T (z⋆) can be represented as

[T (z⋆)]
2
=

[
K∑

k=1

pkr(θk)r
H(θk)

]2
. (21)

Since the reference virtual array consists of the virtual sensors
located at {0, d, 2d, · · · , (L − 1)d} as shown in Fig. 3, its
corresponding steering vector can be described as

r(θk) =
[
1, e−jπ sin(θk), · · · , e−jπ(L−1) sin(θk)

]T
, (22)

which coincides with the phase offset vector b(θk) in (14),
i.e., r(θk) = b(θk). Thus, (21) can be rewritten as

[T (z⋆)]
2
=

(
K∑

k=1

pkr(θk)r
H(θk)

)(
K∑

k=1

pkr(θk)r
H(θk)

)H

=

K∑
k=1

pkr(θk)b
H(θk)︸ ︷︷ ︸

Y

K∑
k=1

pkb(θk)r
H(θk)︸ ︷︷ ︸

Y H

.

(23)

Therefore, the Hermitian PSD Toeplitz matrix T (z⋆) is the co-
variance matrix of the signals received by the reference virtual
array, containing all the information of the interpolated virtual
array. In addition, it is clear from (23) that the interpolated
virtual array covariance matrix T (z⋆) can be obtained from
the principal square root of Y Y H. �

Corollary 2: The first column of the Hermitian PSD Toeplitz
matrix T (z⋆) is equivalent to the virtual signals (second-order
statistics) of the reference virtual array.

Proof: Since T (z⋆) satisfies a Hermitian Toeplitz structure,
its first column z⋆ can be calculated as

z⋆ =

K∑
k=1

pkr(θk) ⟨b(θk)⟩1 =

K∑
k=1

pkr(θk). (24)

Based on the equivalence relationship between r(θk) and
v1(θk) as established in (13), it is clear that z⋆ is equal to
the virtual signals of the reference virtual array y1 as defined
in (11), thus verifying the corollary. �

The defined atomic norm (19) provides a gridless model
tailored for the second-order virtual measurements, and the
associated corollaries and the equivalent SDP form reveal
the important relationship between the interpolated virtual
array covariance matrix and the second-order virtual signals.

Since the involved directional parameters are continuously
parameterized with an atomic norm, the incorporation of the
abovementioned techniques enables to estimate off-grid DOAs
in the virtual domain.

C. DOA Estimation via Toeplitz Matrix Reconstruction

Corollary 1 provides a relationship between the virtual
measurements Y and the Hermitian Toeplitz matrix T (z⋆)
containing the signal information of the interpolated virtual
array, while Corollary 2 relates the reference virtual array
signals to the interpolated virtual array covariance matrix
T (z⋆), such that T (z⋆) can be directly constructed from y1.
However, both Y and T (z⋆) are derived based on an ideal
assumption, i.e., infinite snapshots, noise-free signal model,
and the accurate virtual signals for the interpolated nominal
sensors. According to the initial array interpolation process (9),
the virtual signals corresponding to the interpolated nominal
sensors in SI are initialized to be zeros in yI . Also, the
number of snapshots is finite, and the noise term in (5) is
non-negligible. Therefore, we focus on the reconstruction of
the interpolated virtual array covariance matrix T (z⋆) based
on the initialized interpolated virtual array signals yI under
the gridless framework of the defined atomic norm for virtual
measurements (20).

In practice, the virtual signals of the L sub-arrays in Fig. 3
are obtained by collecting the corresponding elements in yI
(9) rather than those in y (10). Similar to (11), by dividing
the initialized interpolated virtual array signals yI into L
sub-vectors as ỹℓ, ℓ = 1, 2, · · · , L, we have the multiple
virtual measurements as Ỹ = [ỹ1, ỹ2, · · · , ỹL]. According to
Corollary 1, the following equation holds

R̃2
v =

L∑
ℓ=1

ỹℓ ỹ
H
ℓ = Ỹ Ỹ H, (25)

where R̃v ∈ CL×L denotes the reference virtual array co-
variance matrix, containing all information in yI . Since there
exist several zero elements in Ỹ resulting from the interpolated
nominal sensors, the deviation accumulates for each element in
R̃2

v during the summation process in (25). Hence, R̃v cannot
be directly calculated from the principal square root of Ỹ Ỹ H.
Encouragingly, the relationship established in Corollary 2
enables to directly construct R̃v according to the initialized
virtual signals of the reference virtual array as

R̃v =


⟨yI⟩L ⟨yI⟩∗L+1 · · · ⟨yI⟩∗2L−1

⟨yI⟩L+1 ⟨yI⟩L · · · ⟨yI⟩∗2L−2
...

...
. . .

...
⟨yI⟩2L−1 ⟨yI⟩2L−2 · · · ⟨yI⟩L

 , (26)

i.e., R̃v = T (ỹ1). Due to the fact that yI contains several zero
elements, the diagonals in R̃v corresponding to the positions
of holes in the reference virtual array are zeros. It is clear
that the Hermitian Toeplitz matrix R̃v formulated in (26)
is the reference virtual array covariance matrix because it
satisfies the equivalent condition in (25). Considering that
the interpolated virtual array SI is symmetric to the zeroth
position, the complex-valued virtual signals of the symmetrical
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pair are mutually conjugate. Therefore, on the premise of
Hermitian Toeplitz structure, the conclusion in Corollary 2
is consistent with the relationship between the coprime co-
array covariance matrix and the second-order virtual signals
established in [38].

On the other hand, since the additive noise in (1) is
independent of the source signals, its correlation term σ2

nI
does not destruct the Hermitian Toeplitz structure of the
interpolated virtual array covariance matrix. As such, this
special covariance matrix structure can be exploited as a priori
information for DOA estimation, permitting us focusing on
the reference virtual array to investigate the covariance matrix
corresponding to the interpolated virtual array. Accordingly,
we define a binary vector g ∈ RL to distinguish nominal
sensors and virtual sensors in the reference virtual array, whose
element is 0 for the nominal sensor positions and 1 otherwise.

The reconstruction of the interpolated virtual array covari-
ance matrix T (z⋆) starts with the analysis of the atomic norm
of ideal virtual measurements Y , such that the parameters
contained in Y can be continuously represented. According
to the definition of ∥Y ∥A in (19), a natural objective to
describe Y is performing the atomic decomposition of Y
with the minimal number of atoms, i.e., minimizing ∥Y ∥A.
Alternatively, the relationships between Y , z⋆, and T (z⋆)
revealed in Corollaries 1 and 2 enable to reconstruct the
interpolated virtual array covariance matrix T (z⋆) by focusing
on z⋆, since the Hermitian Toeplitz covariance matrix depends
on its first column. Based on the relationship established in
(24), z⋆ is equivalent to the virtual signals of the reference
virtual array, and its corresponding atom set can thus be
defined with respect to the steering vector of the reference
virtual array as

Ar = {r(θ)|θ ∈ [−90◦, 90◦]} . (27)

Note that the atom set Ar for z⋆ relates to the atom set A
for Y defined in (17) by setting the phase offset term in A
as ⟨b(θ)⟩1 = 1, which is consistent with the fact revealed
in Corollary 2 that z⋆ is actually the first column of matrix
Y . Accordingly, the atomic norm of the variable z can be
represented as

∥z∥Ar = inf

{∑
k

pk : z =
∑
k

pkr(θk), pk ≥ 0

}
. (28)

By comparing the definitions of ∥Y ∥A in (19) and ∥z∥Ar

in (28), it is demonstrated that minimizing ∥Y ∥A can be
equivalently transformed to minimizing ∥z∥Ar

by defining the
atom set Ar based on A. Therefore, we focus on minimizing
the atomic norm of z for the reconstruction of the interpolated
virtual array covariance matrix, which can be viewed as
performing the atomic decomposition of z with the minimal
number of atoms according to (28).

Taking the matrix R̃v in (26), which contains the partial cor-
relation observations collected from the derived non-uniform
virtual array SV , as the reference, an atomic norm minimiza-

tion problem can be formulated for Toeplitz covariance matrix
reconstruction as

min
z∈CL

∥z∥Ar

subject to
∥∥∥T (z) ◦G− R̃v

∥∥∥2
F
≤ ε,

T (z) ≽ 0, (29)

where G = ggT ∈ RL×L is a binary matrix to distinguish
the zero (interpolated) and non-zero (derived) statistics in R̃v

due to the initial virtual array interpolation, such that the non-
zero elements in R̃v are comparable with the corresponding
elements in the reconstructed covariance matrix T (z). Here,
ε is a threshold to restrict the fitting error between the non-
zero elements in R̃v and those in the reconstructed covariance
matrix T (z) projected onto G. The PSD constraint on T (z)
follows from its definition in (20). Alternatively, the optimiza-
tion problem (29) can be reformulated as

min
z∈CL

1

2

∥∥∥T (z) ◦G− R̃v

∥∥∥2
F
+ τ∥z∥Ar

subject to T (z) ≽ 0, (30)

where τ is a regularization parameter to balance the fitting
error and the atomic norm term.

Furthermore, with the PSD constraint T (z) ≽ 0, if r =
rank (T (z)) ≤ L−1, the Hermitian Toeplitz matrix T (z) can
be uniquely decomposed via Vandermonde decomposition as
[39]

T (z) =

r∑
k=1

pkr(θk)r
H(θk), (31)

which leads to

Tr (T (z)) = L

r∑
k=1

pk. (32)

Based on the definition of atom set Ar in (27), the relationship
between the atomic norm term ∥z∥Ar

and the trace of T (z)
can be established as

∥z∥Ar = Tr (T (z)) /L. (33)

Hence, the optimization problem (30) can be equivalently
rewritten as

min
z∈CL

1

2

∥∥∥T (z) ◦G− R̃v

∥∥∥2
F
+ µTr (T (z))

subject to T (z) ≽ 0, (34)

where µ = τ/L. The equivalent problem (34) is convex, and
can be solved using standard and highly efficient software
tools based on the interior point methods. With the solution
ẑ of (34), the interpolated virtual array covariance matrix
T (ẑ) can be effectively reconstructed with the Hermitian PSD
Toeplitz structure. The incorporation of the binary matrix
G in (34) constraints the fitting error between the non-zero
entries in R̃v and the optimized covariance matrix T (ẑ)
that are projected onto G, i.e., T (ẑ) ◦ G, such that all the
available correlation observations corresponding to the non-
uniform virtual array SV are utilized for denoising. Mean-
while, the proposed optimization problem also simultaneously
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Algorithm 1 Virtual Array Interpolation-based DOA Estima-
tion

1: Input: Coprime array received signals {x(t)}Tt=1.
2: Output: θ̂k, k = 1, 2, · · · ,K.
3: Initialize: R̂x, ȳv , L.
4: Derive the second-order virtual array signals ȳv by (8);
5: Initialize the interpolated virtual array signals yI via (9);
6: Construct the interpolated virtual array covariance matrix

R̃v according to (26);
7: Define a binary vector g to distinguish the sensors in the

reference virtual array;
8: Solve (34), the equivalent version of the formulated atomic

norm minimization problem (29);
9: Calculate fMUSIC (35) for DOA estimation.

recovers the remaining unknown entries corresponding to the
interpolated nominal sensors, which are initialized as zeros in
R̃v , i.e., Ẑ = T (ẑ)− T (ẑ) ◦G.

Since the reconstructed T (ẑ) corresponds to the reference
virtual array (i.e., a ULA), existing DOA estimation methods
including MUltiple SIgnal Classification (MUSIC)-based [17,
38, 40, 41], Estimation of Signal Parameters via Rotational
Invariance Techniques (ESPRIT)-based [18, 42, 43], and a
series of sparsity-based techniques [9, 22, 44, 45] can be
incorporated into the virtual domain for unambiguous DOA
estimation. For instance, here we present the MUSIC spatial
spectrum as

fMUSIC(θ) =
1

rH(θ)NT (ẑ)N
H
T (ẑ)r(θ)

, (35)

where NT (ẑ) denotes the noise subspace of T (ẑ). It is worth
mentioning that the solution of problem (34), i.e., T (ẑ),
may not be low-rank in the noisy finite-snapshot cases. As
such, the noise subspace NT (ẑ) is obtained by collecting the
eigenvectors corresponding to the L−K smallest eigenvalues
of T (ẑ) for the general case, where the number of sources K
is assumed known a priori with K < L. The DOA estimation
can be obtained by searching the peaks of fMUSIC(θ).

The proposed virtual array interpolation-based DOA esti-
mation algorithm is summarized in Algorithm 1 and has the
following key advantages. First, all the information contained
in the non-uniform virtual array SV is effectively utilized
via array interpolation. Second, the reconstructed covariance
matrix T (ẑ) is strictly Hermitian Toeplitz, which follows the
ideal covariance matrix structure of a ULA. Third, with the
atomic norm minimization of the equivalent virtual signals, the
formulated optimization problem is capable of reconstructing
the interpolated virtual array covariance matrix in a gridless
manner, where the basis mismatch problem can be avoided.
Note that the proposed algorithm is suitable for all kinds of
partially augmentable arrays, and the difference due to the di-
verse virtual array geometries is reflected in the representation
of g and R̃v .

IV. PERFORMANCE ANALYSIS

A. Covariance Matrix Reconstruction Performance

We analyze the performance of the proposed Toeplitz
covariance matrix reconstruction problem depicted in (34).
According to (31), the reconstructed covariance matrix T (ẑ) ∈
CL×L behaves like the covariance matrix of signal s(t)
received by the L sensors in the reference virtual array, and
the virtual array interpolation is thus realized. Considering that
matrix R̃v taken as the reference in (34) contains the additive
noise term as depicted in (26), the theoretical interpolated
virtual array covariance matrix can be defined as

T (z̃) = T (z⋆) + σ2
nI (36)

with its first column described as z̃ =
∑K

k=1 pkr(θk)+σ2
nī0.

Here, ī0 ∈ RL denotes a vector containing the elements in ī
that correspond to the reference virtual array, whose elements
are zeros except a unit element corresponding to the zeroth
sensor position. Accordingly, the theoretical covariance matrix
corresponding to the partial correlation observations in R̃v can
be represented as T (z̃)◦G. Based on the above preliminaries,
we have the following theorem regarding the reconstruction
performance of the proposed algorithm:

Theorem 2: There exists a positive constant C such that the
regularization parameter

µ ≥ Tr (T (z̃))√
T

(37)

is sufficient to guarantee that the reconstruction performance
of (34) as

∥∥∥T (ẑ)◦G−T (z̃)◦G
∥∥∥
F
≤µ+

√√√√µ2+2µL

(
K∑

k=1

pk+σ2
n

)
(38)

with the probability at least 1− 2e−2C
√
T .

Proof: See Appendix B. �
In particular, when the regularization parameter µ equals to

Tr(T (z̃))/
√
T , the reconstruction performance corresponding

to the non-uniform virtual array SV , i.e., the denoising part in
(34), follows∥∥∥T (ẑ)◦G−T (z̃)◦G

∥∥∥
F
≤ 1 +

√
1 + 2

√
T√

T
Tr (T (z̃)) , (39)

where Tr (T (z̃)) = L
(∑K

K=1 pk + σ2
n

)
according to (32)

and (36). Therefore, the performance of the denoising part
relates to the number of snapshots T and the trace of T (z̃).

In addition to the denoising part, the remaining recovered
part Ẑ corresponding to the interpolated nominal sensors also
influences the reconstruction performance. The reconstruction
performance between T (ẑ) and T (z̃) follows∥∥∥T (ẑ)− T (z̃)

∥∥∥
F
≥
∥∥∥T (ẑ) ◦G− T (z̃) ◦G

∥∥∥
F
, (40)

where the equivalence holds if and only if the recovered part Ẑ
is consistent with its theoretical version Z̃ = T (z̃)−T (z̃)◦G.
On the other hand, since there are no available correlation ob-
servations corresponding to the interpolated nominal sensors in
SI −SV and the corresponding elements in R̃v are initialized
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to be zeros, the deviation term ∥T (ẑ)−T (z̃) ∥F can be further
elaborated with respect to the recovered part Ẑ and Z̃ in an
explicit expression as∥∥∥T (ẑ)−T (z̃)

∥∥∥
F

=
∥∥∥T (ẑ) ◦G+ Ẑ − T (z̃) ◦G− Z̃

∥∥∥
F

≤
∥∥∥T (ẑ) ◦G− T (z̃) ◦G

∥∥∥
F
+
∥∥∥Ẑ − Z̃

∥∥∥
F

≤ µ+

√√√√µ2+2µL

(
K∑

k=1

pk+σ2
n

)
+
∥∥∥Ẑ − Z̃

∥∥∥
F
. (41)

Since the binary matrix G is determined by the structure of
SV , both Ẑ and Z̃ are deterministic as long as the systematic
designed coprime array is deployed. Meanwhile, the recon-
struction accuracy of T (ẑ) will be numerically validated in
the second simulation example.

B. DOA Estimation Performance

The performance evaluation of the proposed DOA esti-
mation algorithm follows the stochastic Cramér-Rao bound
(CRB) [46], which is the inversion of the Fisher information
matrix FIM. Although the reconstructed matrix T (ẑ) behaves
like the covariance matrix of a virtual array consisting of L
sensors, the performance is still determined by the original
coprime array because there is no additional information
added during the initialization process (9). Thus, with the full
utilization of the discontiguous virtual array SV , the Fisher
information matrix for the proposed algorithm is a function
of the coprime array covariance matrix Rx, and the (̃i, j̃)-th
element can be represented as

FIMĩ,j̃ = T Tr

[
R−1

x

∂Rx

∂ξĩ
R−1

x

∂Rx

∂ξj̃

]
, (42)

where ξĩ and ξj̃ denote the elements in the deterministic
parameter vector ξ.

Nevertheless, when the number of sources exceeds the
number of physical sensors, the abovementioned Fisher in-
formation matrix is singular, resulting in the stochastic CRB
inapplicable. In view of this, we follow the vectorization
process as in (5) and transform the Fisher information matrix
into a virtual array-based form as [47]

FIM=T

[
vec

(
∂Rx

∂ξ

)]H(
RT

x⊗Rx

)−1
[
vec

(
∂Rx

∂ξ

)]
, (43)

which keeps nonsingular within a much broader range of
conditions. Hence, it overcomes the model mismatch issue
of the stochastic CRB, and presents a lower bound for the
estimation error even when the number of sources is larger
than the number of physical sensors.

In our case, the deterministic parameter vector is defined by

ξ =
[
θT,pT, σ2

n

]T
. (44)

Accordingly, the Fisher information matrix can be specified as

FIM = T

[
∂yv

∂ξ

]H (
RT

x ⊗Rx

)−1
[
∂yv

∂ξ

]
, (45)

where
∂yv

∂ξ
=

[
∂yv

∂θ1
, · · · , ∂yv

∂θK
,
∂yv

∂p1
, · · · , ∂yv

∂pK
,
∂yv

∂σ2
n

]
(46)

with
∂yv

∂θk
= pk

[
∂a∗(θk)

∂θk
⊗ a(θk) + a∗(θk)⊗

∂a(θk)

∂θk

]
,

∂yv

∂pk
= a∗(θk)⊗ a(θk),

∂yv

∂σ2
n

= i. (47)

Therefore, the CRB for the k-th source can be obtained as

CRB(θk) =
[
FIM−1

]
k,k

(48)

for 1 ≤ k ≤ K.

V. SIMULATION RESULTS

In our simulations, we choose the pair of coprime inte-
gers M = 3 and N = 5 to deploy the coprime array,
which yields a total number of M + N − 1 = 7 physical
sensors located at {0, 3d, 5d, 6d, 9d, 10d, 12d}. The proposed
virtual array interpolation-based DOA estimation algorithm is
compared to several recently reported DOA estimation algo-
rithms using coprime arrays, namely, the Covariance Matrix
Sparse Reconstruction (CMSR) algorithm [13], the Sparse
Signal Reconstruction (SSR) algorithm [15], the Nuclear Norm
Minimization (NNM) algorithm [24], the nuclear norm mini-
mization with PSD constraint (NUC-PSD) algorithm [26], and
the Maximum Entropy (ME) algorithm [26]. The sampling
interval of the pre-defined sampling grids is selected to be
0.1◦ for the CMSR algorithm and the SSR algorithm. The
regularization parameter µ for the CMSR algorithm, the SSR
algorithm, and the proposed algorithm is empirically set to be
0.25 (except for one simulation in Fig. 11, where µ is varied),
and the tuning parameters for constraining the optimized
solution within the feasible sets in the NUC-PSD algorithm
and the ME algorithm are optimally selected as recommended
in [26]. The optimization problems are solved using the CVX
[48].

In the first example, we compare the resolution by assuming
two closely spaced uncorrelated sources from the directions
θ1 = −0.5◦ and θ2 = 0.5◦, whose signal-to-noise ratios
(SNRs) are 30 dB. The normalized spatial spectra are com-
pared in Fig. 4 with the number of snapshots T = 500. It
is observed from Fig. 4(a) that the estimation results of the
CMSR method deviate from the actual source directions. It
is because that the CMSR algorithm only incorporates the
contiguous part of the virtual array, i.e., SC in Fig. 2(c), and
the reduced array aperture in the virtual domain affects the
resolution. Since all the virtual signals vectorized from the
sample covariance matrix are utilized in the SSR algorithm,
its spatial spectrum presented in Fig. 4(b) has sharper peaks
and more accurate estimates than the CMSR algorithm. The
ME algorithm and the NUC-PSD algorithm fail to identify
the two closely spaced sources. In contrast, both the NNM
algorithm and the proposed algorithm are capable of resolving
both peaks in the actual source directions.
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Fig. 4. Resolution comparison in terms of the normalized spatial spectrum
with the number of snapshots T = 500. The vertical dashed lines denote
the actual directions of the incident sources. (a) CMSR algorithm; (b) SSR
algorithm; (c) ME algorithm; (d) NUC-PSD algorithm; (e) NNM algorithm;
(f) Proposed algorithm.

When the number of snapshots reduces to T = 100, as
depicted in Fig. 5, all the tested algorithms suffer performance
degradation to some extent due to the limited number of signal
samples. It is observed from Fig. 5(e) that the peaks in the
spatial spectrum of the NNM algorithm are no longer as sharp
as those obtained from the number of snapshots T = 500 as
shown in Fig. 4(e), and the DOA estimates deviate from the
actual source directions. It is because that the NNM algorithm
recovers the covariance matrix of the interpolated virtual array
based on the principle of matrix completion, which means
that the partial correlation observations corresponding to the
non-uniform virtual array SV are retained in the optimized
covariance matrix corresponding to the interpolated virtual
array. Since the equivalent virtual signals are obtained from
the sample covariance matrix, there exists an inherent bias
due to the finite snapshots. Different from the NNM algorithm,
the proposed algorithm retrieves the covariance matrix of the
interpolated virtual array through covariance matrix recon-
struction, where the partial correlation observations contained
in R̃v are taken as the reference. Therefore, the elements
in the reconstructed covariance matrix T (ẑ) may not be the
same ones as those in R̃v . It is evident from Fig. 5(f) that
the proposed algorithm achieves a better resolution than the
others.

In the second example, we compare the root mean square
error (RMSE) of each algorithm in Fig. 6. The RMSE is
defined as

RMSE =

√√√√ 1

KQ

K∑
k=1

Q∑
q=1

(
θ̂k(q)− θk

)2
, (49)
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Fig. 5. Resolution comparison in terms of the normalized spatial spectrum
with the number of snapshots T = 100. The vertical dashed lines denote
the actual directions of the incident sources. (a) CMSR algorithm; (b) SSR
algorithm; (c) ME algorithm; (d) NUC-PSD algorithm; (e) NNM algorithm;
(f) Proposed algorithm.

where θ̂k(q) denotes the estimated DOA of the k-th source
θk in the q-th Monte Carlo trial, and Q denotes the number
of Monte Carlo trials. The direction of the incident source is
randomly generated from the Gaussian distribution N (0◦, 1◦),
and changes from trial to trial but remains fixed from snapshot
to snapshot. The number of snapshots is fixed at T = 500
when the SNR varies, whereas the SNR is fixed at 20 dB when
the number of snapshots varies. The DOAs are estimated by
finding the spectrum peaks for the CMSR algorithm and the
SSR algorithm, whereas the root-MUSIC [41] is performed
on the optimized covariance matrix of the other gridless
algorithms. The Cramér-Rao bound (CRB) (48) is also plotted.
For each data point, the RMSE is calculated from Q = 500
Monte Carlo trials.

It is shown in Fig. 6(a) that the RMSE curves of both the
CMSR algorithm and the SSR algorithm become relatively flat
when the SNR is larger than 10 dB. The reason lies in that the
fixed sampling interval for the pre-defined sampling grids leads
to an inherent basis mismatch, which limits the estimation ac-
curacy. In contrast, the gridless algorithms do not require pre-
defined sampling grids, and their estimation performance are
not limited by the sampling interval. Therefore, their RMSE
are consistent with that manifested in the CRB when the SNR
increases. Also, it is observed from Fig. 6(a) that the gridless
algorithms, especially the NNM algorithm, the NUC-PSD
algorithm, and the proposed algorithm, achieve a quite similar
RMSE performance. Similar performance comparison can also
be found in Fig. 6(b), where the number of snapshots is varied.
As pointed out in the first example, the NNM algorithm and
the proposed algorithm formulate the optimization problems
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Fig. 6. RMSE performance comparison with single incident source. (a) RMSE versus SNR with the number of snapshots T = 500; (b) RMSE versus the
number of snapshots with SNR = 20 dB.
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Fig. 7. NMSE performance comparison of the optimized covariance matrix in each algorithm. (a) NMSE versus SNR with the number of snapshots T = 500;
(b) NMSE versus the number of snapshots with SNR = 20 dB.

based on different principles, namely, matrix completion and
matrix reconstruction, respectively. It is shown in Fig. 6(b)
that the RMSE of the proposed algorithm is slightly smaller
than that of the NNM algorithm.

In order to demonstrate the estimation accuracy of the
reconstructed covariance matrix of the proposed algorithm,
we compare with three tested virtual array interpolation-based
algorithms by evaluating their optimized Hermitian Toeplitz
covariance matrices. Considering that the elements in a Her-
mitian Toeplitz matrix are determined by its first column, here
we define the normalized mean square error (NMSE) as

NMSE =
E
[
∥z̃ − ẑ∥22

]
∥z̃∥22

, (50)

where ẑ is the first column of the estimated Hermitian Toeplitz
matrix T (ẑ). It is demonstrated in Fig. 7(a) that, in such
a case, the proposed covariance matrix reconstruction-based
algorithm outperforms the matrix completion-based NNM

algorithm in terms of the estimation accuracy of the recon-
structed covariance matrix when the SNR is higher than 15 dB.
It is because that the proposed algorithm utilizes the partial
correlation observations as the reference for the covariance
matrix reconstruction, whereas the NNM algorithm keeps the
correlation observations fixed in the optimized covariance ma-
trix. The NMSE performance versus the number of snapshots
shown in Fig. 7(b) also verifies the superiority of the proposed
algorithm.

In the third example, we compare the available DOFs of
the tested algorithms. Assume that there are seven uncorre-
lated equal-power incident sources uniformly distributed in
[−50◦, 50◦] with SNR = 30 dB and T = 500. It can be
seen from Fig. 8 that all the tested algorithms exhibit peaks
around the actual directions by using only seven physical
sensors, where the DOF superiority using the coprime array is
demonstrated. When the number of incident sources increases
to nine, some targets are apparently missed by the CMSR algo-
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Fig. 8. DOFs capability comparison in terms of the spatial spectrum, number
of sources K = 7. The vertical dashed lines denote the actual directions of the
incident sources. (a) CMSR algorithm; (b) SSR algorithm; (c) ME algorithm;
(d) NUC-PSD algorithm; (e) NNM algorithm; (f) Proposed algorithm.

rithm as illustrated in Fig. 9(a), because the CMSR algorithm
picks only the contiguous part of the difference co-array SC
to use the spatial smoothing technique. Hence, the maximum
achievable number of DOFs for the CMSR algorithm is seven.
It is observed from Fig. 8(b) and Fig. 9(b) that there are several
spurious peaks in the obtained sparse spatial spectrum of the
SSR algorithm. In contrast, all the virtual array interpolation-
based algorithms are capable of identifying the nine sources
as exhibited in Figs. 9(c) to 9(f), demonstrating that the DOFs
offered by the non-uniform virtual array can be obtained via
virtual array interpolation.

In the fourth example, we evaluate the RMSE of the
proposed algorithm in Fig. 10 in the case that the number
of sources is equal to or greater than the number of phys-
ical sensors, where the sources are uniformly distributed in
[−50◦, 50◦] with the number of sources K = 7 and K = 9,
respectively. The DOAs are estimated from the spatial spectra
presented in Fig. 8 and Fig. 9 with the spectrum peak search
interval of ∆θ = 0.1◦, and the RMSE is calculated from 500
Monte Carlo trials for each scenario. The virtual array-based
CRB (48) is also presented in Fig. 10 as the reference. It is
observed from Fig. 10(a) that, with the increase of the SNR,
the CRB converges to a constant when the SNR is larger than
5 dB rather than keeps decreasing as in Fig. 6(a). This is
the typical saturation behavior [49]. Although the CRB for
7 sources is lower than that for 9 sources when the SNR is
relatively small, the CRB for 9 sources converges to a lower
one when SNR is larger than 5 dB. It is demonstrated in Fig.
10 that the RMSE of the proposed algorithm has a similar
trend with the CRB, and exhibits the saturation behavior as
the CRB in the asymptotic performance region.
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Fig. 9. DOFs capability comparison in terms of the spatial spectrum, number
of sources K = 9. The vertical dashed lines denote the actual directions of the
incident sources. (a) CMSR algorithm; (b) SSR algorithm; (c) ME algorithm;
(d) NUC-PSD algorithm; (e) NNM algorithm; (f) Proposed algorithm.

In the fifth example, we compare the RMSE performance
with respect to the regularization parameter µ in the case of
SNR = 30 dB and T = 500. The other parameters are the same
as those in the second example. Three algorithms are consid-
ered, namely, the SSR algorithm, the CMSR algorithm, and
the proposed algorithm. According to the comparison results
shown in Fig. 11, it is clear that the change of regularization
parameter µ does not affect the RMSE performance of the
proposed algorithm, whereas the RMSE curves of the other
two algorithms are fluctuant when µ varies. Therefore, the
proposed algorithm is robust to the regularization parameter,
which is comparable to the regularization-free NNM algo-
rithm. In addition, the proposed algorithm has the lowest
RMSE among the three tested algorithms.

In the last example, we compare the computational com-
plexity measured by the computation time for 100 Monte
Carlo trials on an Intel(R) Core(TM) i7-7600U CPU, 16G
RAM laptop, where the sampling/searching interval is varied.
According to Fig. 12, the computational complexities of the
CMSR algorithm and the SSR algorithm increase exponen-
tially when the sampling interval decreases. This is because
the pre-defined dense sampling grids dramatically increase
the computational cost when solving the corresponding op-
timization problems. In contrast, since the gridless algorithms
formulate the optimization problem without pre-defined sam-
pling grids, their computational costs are insensitive to the
selection of the sampling interval. The ME algorithm has
a higher computational complexity than the other gridless
algorithms because it adopts a two-stage optimization process,
whereas the NNM algorithm, the NUC-PSD algorithm, and
the proposed algorithm have the same order of computational
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Fig. 10. RMSE performance comparison with multiple incident sources. (a) RMSE versus SNR with the number of snapshots T = 500; (b) RMSE versus
the number of snapshots with SNR = 20 dB.
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complexity. In particular, it is demonstrated in Fig. 12 that
the proposed algorithm has a lower computational complexity
than the NUC-PSD algorithm, and has a slightly higher
computational complexity than the NNM algorithm. Therefore,
the efficiency of the proposed algorithm is validated.

VI. CONCLUSIONS

In this paper, we proposed a novel virtual array
interpolation-based coprime array DOA estimation algorithm.
The equivalent virtual signals corresponding to the non-
uniform difference co-array are derived, and the nominal
sensors are interpolated to generate a virtual ULA, where all
information of the coprime array received signals is included.
The atomic norm of multiple virtual measurements is inves-
tigated, based on which the relationship between the covari-
ance matrix of the interpolated virtual array and the virtual
signals is established. An optimization problem is formulated
by minimizing the atomic norm of a virtual measurement
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Fig. 12. Computation time comparison with different sampling interval.

vector in a gridless manner, where the reconstructed Toeplitz
covariance matrix is utilized for DOA estimation with an
increased number of DOFs. The effectiveness of the proposed
algorithm is verified through simulation comparisons with
existing algorithms.

Although the proposed DOA estimation algorithm is for a
systematic coprime array, the virtual array interpolation-based
technique proposed in this paper is applicable to a general
class of partially augmentable arrays, and the implementation
in different sparse array configurations is straightforward.

APPENDIX A
PROOF OF THEOREM 1

We prove Theorem 1 from two aspects, namely, the lower
bound of ∥Y ∥A and the upper bound of ∥Y ∥A.

Part A: The lower bound of ∥Y ∥A.
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Proof: Assume that the atomic decomposition of Y is

Y =
K∑

k=1

pkB(θk). (51)

According to the Vandermonde decomposition lemma [39],
there exists a variable vector z satisfying

T (z) =

K∑
k=1

pkr(θk)r
H(θk). (52)

Accordingly, we have[
T (z) Y

Y H W

]

=


K∑

k=1

pkr(θk)r
H(θk)

K∑
k=1

pkB(θk)

K∑
k=1

pkB
H(θk)

K∑
k=1

pkb(θk)b
H(θk)


=

K∑
k=1

pk

[
r(θk)

b(θk)

] [
rH(θk) bH(θk)

]
≽ 0. (53)

Based on the definitions of r(θ) in (13) and b(θ) in (14), we
have

Tr
(
r(θk)r

H(θk)
)
= Tr

(
b(θk)b

H(θk)
)
= L, (54)

thus we can obtain that

1

2L
Tr (T (z)) +

1

2L
Tr (W ) =

K∑
k=1

pk = ∥Y ∥A. (55)

Therefore,

∥Y ∥A ≥ inf
z∈CL,W∈CL×L

{
1

2L
Tr (T (z)) +

1

2L
Tr(W )

∣∣∣∣[
T (z) Y
Y H W

]
≽ 0

}
. (56)

Part B: The upper bound of ∥Y ∥A.
Proof: Assume that the PSD constraint in (20) holds. With

the Vandermonde decomposition, the PSD Toeplitz matrix
T (z) can be represented as

T (z) = DCDH, (57)

where D ∈ CL×K is a Vandermonde matrix, and C =
diag(ck) with ck ≥ 0 [32]. Since ∥r(θk)∥2 =

√
L, we have

Tr (T (z)) = Tr

(
K∑

k=1

pkr(θk)r
H(θk)

)
= LTr(C). (58)

Consequently, each r(θk), k = 1, 2, · · · ,K, lies in the range
spanned by D, and Y can be rewritten as

Y = DE, (59)

where the matrix E ∈ CK×L contains both the power and
phase offsets information among the virtual measurements.

Denoting e = [e1, e2, · · · , eK ]T as the first column of E,
the PSD matrix W can then be represented as

W = EHQE, (60)

where Q is also a PSD matrix. Since the matrix[
T (z) Y

Y H W

]

=

[
D 0

0 EH

][
C I

I Q

][
DH 0

0 E

]
≽ 0, (61)

according to the Schur complement lemma, we have[
C I

I Q

]
≽ 0, (62)

and
Q ≽ C−1. (63)

Here, we can naturally obtain that

Tr (W ) = Tr
(
EHQE

)
≥ Tr

(
EHC−1E

)
. (64)

Further, we have

Tr
(
EHC−1E

)
= Tr

(
C−1EEH

)
= L

∑
k

c−1
k |ek|2. (65)

Substituting (65) into (64) yields

Tr(W ) ≥ L
∑
k

c−1
k |ek|2. (66)

With (58) and (66), we have

1

2L
Tr (T (z)) +

1

2L
Tr (W )

≥ 1

2
Tr (C) +

1

2

∑
k

c−1
k |ek|2

=
1

2

∑
k

ck +
1

2

∑
k

c−1
k |ek|2

≥
√∑

k

ck
∑
k

c−1
k |ek|2

≥
∑
k

|ek| ≥ ∥Y ∥A. (67)

Therefore,

∥Y ∥A ≤ inf
z∈CL,W∈CL×L

{
1

2L
Tr (T (z)) +

1

2L
Tr(W )

∣∣∣∣[
T (z) Y
Y H W

]
≽ 0

}
. (68)

Combining (56) and (68), we can draw the conclusion that

∥Y ∥A = inf
z∈CL,W∈CL×L

{
1

2L
Tr (T (z)) +

1

2L
Tr(W )

∣∣∣∣[
T (z) Y
Y H W

]
≽ 0

}
, (69)

which can be viewed as an equivalent expression of ∥Y ∥A
defined in (19). �
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APPENDIX B
PROOF OF THEOREM 2

Proof: The fitting error between the observed correlation
observations in R̃v and the corresponding elements in the
reconstructed covariance matrix T (ẑ)◦G can be expressed as∥∥∥T (ẑ) ◦G− R̃v

∥∥∥2
F

=
∥∥∥T (ẑ) ◦G− T (z̃) ◦G+ T (z̃) ◦G− R̃v

∥∥∥2
F

=
∥∥∥T (ẑ) ◦G− T (z̃) ◦G

∥∥∥2
F
+
∥∥∥T (z̃) ◦G− R̃v

∥∥∥2
F

+ 2
⟨
T (ẑ) ◦G− T (z̃) ◦G, T (z̃) ◦G− R̃v

⟩
F
, (70)

where ⟨ · , · ⟩F denotes the Frobenius inner product. Since ẑ is
the optimal solution to (34), we have∥∥∥T (ẑ) ◦G− R̃v

∥∥∥2
F
−
∥∥∥T (z̃) ◦G− R̃v

∥∥∥2
F

≤ 2µTr (T (z̃))− 2µTr (T (ẑ)) . (71)

Combining the Cauchy-Schwarz inequality on the Frobenius
inner product term as∣∣∣⟨T (ẑ) ◦G− T (z̃) ◦G, T (z̃) ◦G− R̃v

⟩
F

∣∣∣
≤
∥∥∥T (ẑ) ◦G− T (z̃) ◦G

∥∥∥
F

∥∥∥T (z̃) ◦G− R̃v

∥∥∥
F
, (72)

(70) can be reformulated as∥∥∥T (ẑ) ◦G− T (z̃) ◦G
∥∥∥2
F

=
∥∥∥T (ẑ) ◦G− R̃v

∥∥∥2
F
−
∥∥∥T (z̃) ◦G− R̃v

∥∥∥2
F

− 2
⟨
T (ẑ) ◦G− T (z̃) ◦G, T (z̃) ◦G− R̃v

⟩
F

≤ 2
∥∥∥T (ẑ) ◦G− T (z̃) ◦G

∥∥∥
F

∥∥∥T (z̃) ◦G− R̃v

∥∥∥
F

+ 2µTr (T (z̃))− 2µTr (T (ẑ)) . (73)

Before proceeding, we discuss the selection of the regu-
larization parameter µ in (34), where the following bound
established in [27] is utilized.

Lemma 1 [27]: Let {x(t), t = 1, 2, · · ·T} be zero mean i.i.d.
Gaussian random vectors distributed as x(t) ∼ CN (0,Rx).
Then,

P
{∥∥∥Rx − R̂x

∥∥∥
F
≥ Tr (Rx)√

T

}
≤ 2e−2C

√
T , (74)

where P( · ) denotes the probability.
By generalizing the relationship revealed in (74) to the

virtual domain, we have∥∥∥T (z̃) ◦G− R̃v

∥∥∥
F
≤ Tr (T (z̃) ◦G)√

T
(75)

with probability at least 1 − 2e−2C
√
T . Without loss of gen-

erality, the selection of the regularization parameter µ can be
related to the fitting error between the reference covariance
matrix R̃v and its theoretical version T (z̃) ◦G as

µ≥Tr (T (z̃) ◦G)√
T

=
Tr (T (z̃))√

T
=

L√
T

(
K∑

k=1

pk+σ2
n

)
, (76)

where the equation Tr (T (z̃) ◦G) = Tr (T (z̃)) holds due
to the fact that the zeroth position is always included in the
derived non-uniform virtual array SV for the sparse arrays.

On the other hand, since the reconstructed covariance matrix
T (ẑ) is a PSD matrix, we have Tr (T (ẑ)) ≥ 0. Then, the
relationship in (73) continues as∥∥∥T (ẑ) ◦G− T (z̃) ◦G

∥∥∥2
F

≤ 2µ
∥∥∥T (ẑ) ◦G− T (z̃) ◦G

∥∥∥
F
+ 2µTr (T (z̃)) . (77)

Denoting δ = ∥T (ẑ) ◦G−T (z̃) ◦G∥F , the factorization of
the quadratic inequality (77) yields(
δ−µ−

√
µ2+2µTr(T(z̃))

)(
δ−µ+

√
µ2+2µTr(T(z̃))

)
≤0.

(78)

Hence, we have∥∥∥T (ẑ) ◦G− T (z̃) ◦G
∥∥∥
F
≤ µ+

√
µ2 + 2µTr (T (z̃))

=µ+

√√√√µ2+2µL

(
K∑

k=1

pk+σ2
n

)
,

(79)

which establishes the relationship described in (38). �
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